28 research outputs found

    Photoelectron imaging of the SO3 anion: vibrational resolution in photoelectron angular distributions*

    Get PDF
    The photoelectron imaging of the pyramidal sulphite radical monoanion is presented in the photon energy range spanning 3.10–4.45 eV. Two features are seen corresponding to formation of the ground electronic state of the neutral and to thermionic emission, which is seen for hv > 3.7 eV. Photoelectron spectra corresponding to direct detachment show vibrational structure associated with the v2 umbrella mode of the neutral. A similar structure is seen in the photoelectron angular distributions. The photoelectron angular distributions were modelled and agree with experiment. However, we cannot provide an explanation for the observed vibrational structure in the photoelectron angular distributions. The observed thermionic emission is assigned to the excitation to a pair of degenerate Feshbach resonances, which can internally convert and subsequently emit electrons statistically

    Ultrafast valence to non-valence excited state dynamics in a common anionic chromophore

    Get PDF
    Non-valence states in neutral molecules (Rydberg states) have well-established roles and importance in photochemistry, however, considerably less is known about the role of non-valence states in photo-induced processes in anions. Here, femtosecond time-resolved photoelectron imaging is used to show that photoexcitation of the S1(ππ*) state of the methyl ester of deprotonated para-coumaric acid – a model chromophore for photoactive yellow protein (PYP) – leads to a bifurcation of the excited state wavepacket. One part remains on the S1(ππ*) state forming a twisted intermediate, whilst a second part leads to the formation of a non-valence (dipole-bound) state. Both populations eventually decay independently by vibrational autodetachment. Valence-to-non-valence internal conversion has hitherto not been observed in the intramolecular photophysics of an isolated anion, raising questions into how common such processes might be, given that many anionic chromophores have bright valence states near the detachment threshold

    Fingerprinting the Excited State Dynamics in Methyl Ester and Methyl Ether Anions of Deprotonated para-Coumaric Acid

    Get PDF
    Chromophores based on the para-hydroxycinnamate moiety are widespread in the natural world, including as the photoswitching unit in photoactive yellow protein and as a sunscreen in the leaves of plants. Here, photodetachment action spectroscopy combined with frequency- and angle-resolved photoelectron imaging is used to fingerprint the excited state dynamics over the first three bright action-absorption bands in the methyl ester anions (pCEs−) of deprotonated para-coumaric acid at a temperature of ≈300K. The excited states associated with the action- absorption bands are classified as resonances because they are situated in the detachment continuum and are open to autodetachment. The frequency-resolved photoelectron spectrum for pCEs− indicates that all photon energies over the S1(ππ∗) band lead to similar vibrational autodetachment dynamics. The S2(nπ∗) band is Herzberg-Teller active and has comparable brightness to the higher lying 21(ππ∗) band. The frequency-resolved photoelectron spectrum over the S2(nπ∗) band indicates more efficient internal conversion to the S1(ππ∗) state for photon energies resonant with the Franck-Condon modes (≈80 %) compared with the Herzberg-Teller modes (≈60%). The third action-absorption band, which corresponds to excitation of the 21(ππ∗) state, shows com- plex and photon-energy-dependent dynamics, with 20–40% of photoexcited population internally converting to the S1(ππ∗) state. There is also evidence for a mode-specific competition between prompt autodetachment and internal conversion on the red edge of the 21(ππ∗) band. There is no evidence for recovery of the ground elec- tronic state and statistical electron ejection (thermionic emission) following photoexcitation over any of the three action-absorption bands. Photoelectron spectra for the deprotonated methyl ether derivative (pCEt−) at photon energies over the S1(ππ∗) and S2(nπ∗) bands indicate diametrically opposed dynamics compared with pCEs−, namely intense thermionic emission due to efficient recovery of the ground electronic state

    Photochemical Degradation of the UV Filter Octyl Methoxy Cinnamate Probed via Laser-Interfaced Mass Spectrometry

    Get PDF
    Octyl methoxycinnamate (OMC) is a common UVA and UVB filter molecule that is widely used in commercial sunscreens. Here, we used gas-phase laser photodissociation spectroscopy to characterise the intrinsic photostability and photodegradation products of OMC by studying the system in its protonated form, i.e., [OMC·H]+. The major photofragments observed were m/z 179, 161, and 133, corresponding to fragmentation on either side of the ether oxygen of the ester group (m/z 179 and 161) or the C–C bond adjacent to the ester carbonyl group. Additional measurements were obtained using higher-energy collisional dissociation mass spectrometry (HCD-MS) to identify fragments that resulted from the breakdown of the vibrationally hot electronic ground state. We found that the m/z 179 and 161 ions were the main fragments produced by this route. Notably, the m/z 133 ion was not observed through HCD-MS, revealing that this product ion is only produced through a photochemical route. Our results demonstrate that UV photoexcitation of OMC is able to access a dissociative excited-state surface that uniquely leads to the rupture of the C–C bond adjacent to the key ester carbonyl group

    Laser Interfaced Mass Spectrometry of the Sunscreen Molecule Octocrylene Demonstrates that Protonation Does Not Impact Photostability

    Get PDF
    Octocrylene (OCR) is a widely used organic sunscreen molecules, and is a dominant component of many sunscreen formulations. Here, we perform the first measurements on the protonated form of OCR, i. e. [OCR+H]+, to probe whether protonation affects the molecule's photostability. The novel photochemical technique of UV laser-interfaced mass spectrometry is employed from 400–216 nm, revealing that the electronic absorption spectrum of OCR across the S1 and S2 states red shift by 40 nm upon protonation. Our measurements reveal that [OCR+H]+ predominantly undergoes photofragmentation into the m/z 250 and 232 ionic products, associated with loss of its bulky alkyl side chain, and subsequent loss of water, respectively. We compare the photochemical fragmentation results with higher-energy collisional dissociation results to investigate the nature of the photodynamics that occur following UV absorption. The excited state decay pathways over the S1 and S2 excited states of [OCR+H]+ are associated with statistical fragmentation in line with dominant ultrafast decay. This behaviour mirrors that of neutral OCR, demonstrating that protonation does not affect the ultrafast decay pathways of this sunscreen molecule. We discuss our results in the context of the known breakdown of OCR into benzophenone, identifying a potential photoactivated pathway to benzophenone formation in solution

    Resonances in nitrobenzene probed by the electron attachment to neutral and by the photodetachment from anion

    Get PDF
    We probe resonances (transient anions) in nitrobenzene with the focus on the electron emission from these. Experimentally, we populate resonances in two ways: either by the impact of free electrons on the neutral molecule or by the photoexcitation of the bound molecular anion. These two excitation means lead to transient anions in different initial geometries. In both cases, the anions decay by electron emission and we record the electron spectra. Several types of emission are recognized, differing by the way in which the resulting molecule is vibrationally excited. In the excitation of specific vibrational modes, distinctly different modes are visible in electron collision and photodetachment experiments. The unspecific vibrational excitation, which leads to the emission of thermal electrons following the internal vibrational redistribution, shows similar features in both experiments. A model for the thermal emission based on a detailed balance principle agrees with the experimental findings very well. Finally, a similar behavior in the two experiments is also observed for a third type of electron emission, the vibrational autodetachment, which yields electrons with constant final energies over a broad range of excitation energies. The entrance channels for the vibrational autodetachment are examined in detail, and they point to a new mechanism involving a reverse valence to non-valence internal conversion

    Nonadiabatic Dynamics between Valence, Nonvalence, and Continuum Electronic States in a Heteropolycyclic Aromatic Hydrocarbon

    Get PDF
    Internal conversion between valence-localized and dipole-bound states is thought to be a ubiquitous process in polar molecular anions, yet there is limited direct evidence. Here, photodetachment action spectroscopy and time-resolved photoelectron imaging with a heteropolycyclic aromatic hydrocarbon (hetero-PAH) anion, deprotonated 1-pyrenol, is used to demonstrate a subpicosecond (τ1 = 160 ± 20 fs) valence to dipole-bound state internal conversion following excitation of the origin transition of the first valence-localized excited state. The internal conversion dynamics are evident in the photoelectron spectra and in the photoelectron angular distributions (β2 values) as the electronic character of the excited state population changes from valence to nonvalence. The dipole-bound state subsequently decays through mode-specific vibrational autodetachment with a lifetime τ2 = 11 ± 2 ps. These internal conversion and autodetachment dynamics are likely common in molecular anions but difficult to fingerprint due to the transient existence of the dipole-bound state. Potential implications of the present excited state dynamics for interstellar hetero-PAH anion formation are discussed

    Probing the electronic relaxation pathways and photostability of the synthetic nucleobase Z via laser interfaced mass spectrometry.

    Get PDF
    The photostability of synthetic (unnatural) nucleobases is important in establishing the integrity of new genetic alphabets, and critical for developing healthy semisynthetic organisms. Here, we report the first study to explore the photostability and electronic decay pathways of the synthetic nucleobase, Z (6-amino-5-nitro-2(1 H)-pyridone), combining UV laser photodissociation and collisional dissociation measurements to characterise the decay pathways across the region from 3.1-4.9 eV. Photoexcitation across this region produced the m/ z 138 ion as the dominant photofragment, mirroring the dominant fragment produced upon higher-energy collisional excitation. Analysis of the ion-yield production curve profile for the m/ z 138 ion indicates that it is produced following ultrafast excited state decay with boil off of the OH functional group of Z from the hot electronic ground state. Electronic structure calculations provide physical insight into why this is the dominant fragmentation pathway, since a node in the electron density along the C-OH bond is found for all tautomers of Z. While the dominant decay pathway for Z is consistent with ultrafast excited state decay, we also identify several minor dissociative photochemistry decay pathways, associated with intrinsic photoinstability. The results presented here can be used to guide the development of more photostable synthetic nucleobases

    Autoionization from the plasmon resonance in isolated 1-cyanonaphthalene

    Get PDF
    Polycyclic aromatic hydrocarbons have widely been conjectured to be ubiquitous in space, as supported by the recent discovery of two isomers of cyanonaphthalene, indene, and 2-cyanoindene in the Taurus molecular cloud-1 using radioastronomy. Here, the photoionization dynamics of 1-cyanonaphthalene (1-CNN) are investigated using synchrotron radiation over the hν = 9.0–19.5 eV range, revealing that prompt autoionization from the plasmon resonance dominates the photophysics for hν = 11.5–16.0 eV. Minimal photo-induced dissociation, whether originating from an excited state impulsive bond rupture or through internal conversion followed by a statistical bond cleavage process, occurs over the microsecond timescale (as limited by the experimental setup). The direct photoionization cross section and photoelectron angular distributions are simulated using an ezDyson model combining Dyson orbitals with Coulomb wave photoejection. When considering these data in conjunction with recent radiative cooling measurements on 1-CNN+, which showed that cations formed with up to 5 eV of internal energy efficiently stabilize through recurrent fluorescence, we conclude that the organic backbone of 1-CNN is resilient to photodestruction by VUV and soft XUV radiation. These dynamics may prove to be a common feature for the survival of small polycyclic aromatic hydrocarbons in space, provided that the cations have a suitable electronic structure to support recurrent fluorescence
    corecore