815 research outputs found

    N-body simulations with two-orders-of-magnitude higher performance using wavelets

    Get PDF
    Noise is a problem of major concern for N-body simulations of structure formation in the early Universe, of galaxies and plasmas. Here for the first time we use wavelets to remove noise from N-body simulations of disc galaxies, and show that they become equivalent to simulations with two orders of magnitude more particles. We expect a comparable improvement in performance for cosmological and plasma simulations. Our wavelet code will be described in a following paper, and will then be available on request.Comment: Mon. Not. R. Astron. Soc., in press. The interested reader is strongly recommended to ignore the low-resolution Fig. 3 (and Fig. 4), and to download the full-resolution paper (700 kb) from http://www.oso.chalmers.se/~romeo/Paper_VI.ps.g

    Pressure-energy correlations and thermodynamic scaling in viscous Lennard-Jones liquids

    Full text link
    We use molecular dynamics simulation results on viscous binary Lennard-Jones mixtures to examine the correlation between the potential energy and the virial. In accord with a recent proposal [U. R. Pedersen et. al. Phys. Rev. Lett. 100, 015701 (2008)], the fluctuations in the two quantities are found to be strongly correlated, exhibiting a proportionality constant, Gamma, numerically equal to one-third the slope of an inverse power law approximation to the intermolecular potential function. The correlation is stronger at higher densities, where interatomic separations are in the range where the inverse power law approximation is more accurate. These same liquids conform to thermodynamic scaling of their dynamics, with the scaling exponent equal to Gamma. Thus, the properties of strong correlation between energy and pressure and thermodynamic scaling both reflect the ability of an inverse power law representation of the potential to capture interesting features of the dynamics of dense, highly viscous liquids.Comment: 5 pages, 4 figures; published version, one figure remove

    A wavelet add-on code for new-generation N-body simulations and data de-noising (JOFILUREN)

    Get PDF
    Wavelets are a new and powerful mathematical tool, whose most celebrated applications are data compression and de-noising. In Paper I (Romeo, Horellou & Bergh 2003, astro-ph/0302343), we have shown that wavelets can be used for removing noise efficiently from cosmological, galaxy and plasma N-body simulations. The expected two-orders-of-magnitude higher performance means, in terms of the well-known Moore's law, an advance of more than one decade in the future. In this paper, we describe a wavelet add-on code designed for such an application. Our code can be included in common grid-based N-body codes, is written in Fortran, is portable and available on request from the first author. The code can also be applied for removing noise from standard data, such as signals and images.Comment: Mon. Not. R. Astron. Soc., in press. The interested reader is strongly recommended to ignore the low-resolution Figs 10 and 11, and to download the full-resolution paper (800 kb) from http://www.oso.chalmers.se/~romeo/Paper_VII.ps.g

    Rejuvenating Power Spectra II: the Gaussianized galaxy density field

    Full text link
    We find that, even in the presence of discreteness noise, a Gaussianizing transform (producing a more-Gaussian one-point distribution) reduces nonlinearities in the power spectra of cosmological matter and galaxy density fields, in many cases drastically. Although Gaussianization does increase the effective shot noise, it also increases the power spectrum's fidelity to the linear power spectrum on scales where the shot noise is negligible. Gaussianizing also increases the Fisher information in the power spectrum in all cases and resolutions, although the gains are smaller in redshift space than in real space. We also find that the gain in cumulative Fisher information from Gaussianizing peaks at a particular grid resolution that depends on the sampling level.Comment: Slight changes to match version accepted to ApJ. 7 pages, 8 figure

    Proprietary Reasons and Joint Action

    Get PDF
    Some of the reasons one acts on in joint action are shared with fellow participants. But others are proprietary: reasons of one’s own that have no direct practical significance for other participants. The compatibility of joint action with proprietary reasons serves to distinguish the former from other forms of collective agency; moreover, it is arguably a desirable feature of joint action. Advocates of “team reasoning” link the special collective intention individual participants have when acting together with a distinctive form of practical reasoning that purports to put individuals in touch with group or collective reasons. Such views entail the surprising conclusion that one cannot engage in joint action for proprietary reasons. Suppose we understand the contrast between minimal and robust forms of joint action in terms of the extent to which participants act on proprietary reasons as opposed to shared reasons. Then, if the team reasoning view of joint intention and action is correct, it makes no sense to talk of minimal joint action. As soon as the reason for which one participates is proprietary, then one is not, on this view, genuinely engaged in joint action

    The moral obligations of trust

    Get PDF
    Moral obligation, Darwall argues, is irreducibly second personal. So too, McMyler argues, is the reason for belief supplied by testimony and which supports trust. In this paper, I follow Darwall in arguing that the testimony is not second personal ‘all the way down’. However, I go on to argue, this shows that trust is not fully second personal, which in turn shows that moral obligation is equally not second personal ‘all the way down’

    Standing in a Garden of Forking Paths

    Get PDF
    According to the Path Principle, it is permissible to expand your set of beliefs iff (and because) the evidence you possess provides adequate support for such beliefs. If there is no path from here to there, you cannot add a belief to your belief set. If some thinker with the same type of evidential support has a path that they can take, so do you. The paths exist because of the evidence you possess and the support it provides. Evidential support grounds propositional justification. The principle is mistaken. There are permissible steps you may take that others may not even if you have the very same evidence. There are permissible steps that you cannot take that others can even if your beliefs receive the same type of evidential support. Because we have to assume almost nothing about the nature of evidential support to establish these results, we should reject evidentialism

    Leibniz, Acosmism, and Incompossibility

    Get PDF
    Leibniz claims that God acts in the best possible way, and that this includes creating exactly one world. But worlds are aggregates, and aggregates have a low degree of reality or metaphysical perfection, perhaps none at all. This is Leibniz’s tendency toward acosmism, or the view that there this no such thing as creation-as-a-whole. Many interpreters reconcile Leibniz’s acosmist tendency with the high value of worlds by proposing that God sums the value of each substance created, so that the best world is just the world with the most substances. I call this way of determining the value of a world the Additive Theory of Value (ATV), and argue that it leads to the current and insoluble form of the problem of incompossibility. To avoid the problem, I read “possible worlds” in “God chooses the best of all possible worlds” as referring to God’s ideas of worlds. These ideas, though built up from essences, are themselves unities and so well suited to be the value bearers that Leibniz’s theodicy requires. They have their own value, thanks to their unity, and that unity is not preserved when more essences are added

    Control of high-order harmonic emission using attosecond pulse trains

    Get PDF
    We show that attosecond pulse trains are a natural tool to control strong field processes such as high-order harmonic generation. Coherently combining an attosecond pulse train with an IR driving field, we predict and experimentally confirm enhancement and spectral narrowing of the harmonic yield at photon energies around 90 eV. The use of an attosecond pulse train to seed the harmonic generation process replaces tunneling ionization with a single-photon ionization step, therefore permitting the manipulation of the time–frequency properties of high-order harmonic generation already at the single-atom level. © 2006 Taylor & Francis Group, LLC

    An argument for the use of Aristotelian method in bioethics

    Get PDF
    The main claim of this paper is that the method outlined and used in Aristotle's Ethics is an appropriate and credible one to use in bioethics. Here “appropriate” means that the method is capable of establishing claims and developing concepts in bioethics and “credible” that the method has some plausibility, it is not open to obvious and immediate objection. It begins by suggesting why this claim matters and then gives a brief outline of Aristotle's method. The main argument is made in three stages. First, it is argued that Aristotelian method is credible because it compares favourably with alternatives. In this section it is shown that Aristotelian method is not vulnerable to criticisms that are made both of methods that give a primary place to moral theory (such as utilitarianism) and those that eschew moral theory (such as casuistry and social science approaches). As such, it compares favourably with these other approaches that are vulnerable to at least some of these criticisms. Second, the appropriateness of Aristotelian method is indicated through outlining how it would deal with a particular case. Finally, it is argued that the success of Aristotle's philosophy is suggestive of both the credibility and appropriateness of his method.</p
    • 

    corecore