15 research outputs found

    A method to assess the clinical significance of unclassified variants in the BRCA1 and BRCA2 genes based on cancer family history

    Get PDF
    Introduction Unclassified variants (UVs) in the BRCA1/BRCA2 genes are a frequent problem in counseling breast cancer and/or ovarian cancer families. Information about cancer family history is usually available, but has rarely been used to evaluate UVs. The aim of the present study was to identify which is the best combination of clinical parameters that can predict whether a UV is deleterious, to be used for the classification of UVs. Methods We developed logistic regression models with the best combination of clinical features that distinguished a positive control of BRCA pathogenic variants (115 families) from a negative control population of BRCA variants initially classified as UVs and later considered neutral (38 families). Results The models included a combination of BRCAPRO scores, Myriad scores, number of ovarian cancers in the family, the age at diagnosis, and the number of persons with ovarian tumors and/ or breast tumors. The areas under the receiver operating characteristic curves were respectively 0.935 and 0.836 for the BRCA1 and BRCA2 models. For each model, the minimum receiver operating characteristic distance (respectively 90% and 78% specificity for BRCA1 and BRCA2) was chosen as the cutoff value to predict which UVs are deleterious from a study population of 12 UVs, present in 59 Dutch families. The p. S1655F, p. R1699W, and p. R1699Q variants in BRCA1 and the p. Y2660D, p. R2784Q, and p. R3052W variants in BRCA2 are classified as deleterious according to our models. The predictions of the p. L246V variant in BRCA1 and of the p. Y42C, p. E462G, p. R2888C, and p. R3052Q variants in BRCA2 are in agreement with published information of them being neutral. The p. R2784W variant in BRCA2 remains uncertain. Conclusions The present study shows that these developed models are useful to classify UVs in clinical genetic practic

    Poor quality vital anti-malarials in Africa - an urgent neglected public health priority

    Get PDF
    BACKGROUND: Plasmodium falciparum malaria remains a major public health problem. A vital component of malaria control rests on the availability of good quality artemisinin-derivative based combination therapy (ACT) at the correct dose. However, there are increasing reports of poor quality anti-malarials in Africa. METHODS: Seven collections of artemisinin derivative monotherapies, ACT and halofantrine anti-malarials of suspicious quality were collected in 2002/10 in eleven African countries and in Asia en route to Africa. Packaging, chemical composition (high performance liquid chromatography, direct ionization mass spectrometry, X-ray diffractometry, stable isotope analysis) and botanical investigations were performed. RESULTS: Counterfeit artesunate containing chloroquine, counterfeit dihydroartemisinin (DHA) containing paracetamol (acetaminophen), counterfeit DHA-piperaquine containing sildenafil, counterfeit artemether-lumefantrine containing pyrimethamine, counterfeit halofantrine containing artemisinin, and substandard/counterfeit or degraded artesunate and artesunate+amodiaquine in eight countries are described. Pollen analysis was consistent with manufacture of counterfeits in eastern Asia. These data do not allow estimation of the frequency of poor quality anti-malarials in Africa. CONCLUSIONS: Criminals are producing diverse harmful anti-malarial counterfeits with important public health consequences. The presence of artesunate monotherapy, substandard and/or degraded and counterfeit medicines containing sub-therapeutic amounts of unexpected anti-malarials will engender drug resistance. With the threatening spread of artemisinin resistance to Africa, much greater investment is required to ensure the quality of ACTs and removal of artemisinin monotherapies. The International Health Regulations may need to be invoked to counter these serious public health problems

    Evaluation of in vitro cross-reactivity to avian H5N1 and pandemic H1N1 2009 influenza following prime boost regimens of seasonal influenza vaccination in healthy human subjects: a randomised trial.

    Get PDF
    Recent studies have demonstrated that inactivated seasonal influenza vaccines (IIV) may elicit production of heterosubtypic antibodies, which can neutralize avian H5N1 virus in a small proportion of subjects. We hypothesized that prime boost regimens of live and inactivated trivalent seasonal influenza vaccines (LAIV and IIV) would enhance production of heterosubtypic immunity and provide evidence of cross-protection against other influenza viruses.In an open-label study, 26 adult volunteers were randomized to receive one of four vaccine regimens containing two doses of 2009-10 seasonal influenza vaccines administered 8 (±1) weeks apart: 2 doses of LAIV; 2 doses of IIV; LAIV then IIV; IIV then LAIV. Humoral immunity assays for avian H5N1, 2009 pandemic H1N1 (pH1N1), and seasonal vaccine strains were performed on blood collected pre-vaccine and 2 and 4 weeks later. The percentage of cytokine-producing T-cells was compared with baseline 14 days after each dose.Subjects receiving IIV had prompt serological responses to vaccine strains. Two subjects receiving heterologous prime boost regimens had enhanced haemagglutination inhibition (HI) and neutralization (NT) titres against pH1N1, and one subject against avian H5N1; all three had pre-existing cross-reactive antibodies detected at baseline. Significantly elevated titres to H5N1 and pH1N1 by neuraminidase inhibition (NI) assay were observed following LAIV-IIV administration. Both vaccines elicited cross-reactive CD4+ T-cell responses to nucleoprotein of avian H5N1 and pH1N1. All regimens were safe and well tolerated.Neither homologous nor heterologous prime boost immunization enhanced serum HI and NT titres to 2009 pH1N1 or avian H5N1 compared to single dose vaccine. However heterologous prime-boost vaccination did lead to in vitro evidence of cross-reactivity by NI; the significance of this finding is unclear. These data support the strategy of administering single dose trivalent seasonal influenza vaccine at the outset of an influenza pandemic while a specific vaccine is being developed.ClinicalTrials.gov NCT01044095

    Poor quality vital anti-malarials in Africa - an urgent neglected public health priority

    No full text
    Abstract Background Plasmodium falciparum malaria remains a major public health problem. A vital component of malaria control rests on the availability of good quality artemisinin-derivative based combination therapy (ACT) at the correct dose. However, there are increasing reports of poor quality anti-malarials in Africa. Methods Seven collections of artemisinin derivative monotherapies, ACT and halofantrine anti-malarials of suspicious quality were collected in 2002/10 in eleven African countries and in Asia en route to Africa. Packaging, chemical composition (high performance liquid chromatography, direct ionization mass spectrometry, X-ray diffractometry, stable isotope analysis) and botanical investigations were performed. Results Counterfeit artesunate containing chloroquine, counterfeit dihydroartemisinin (DHA) containing paracetamol (acetaminophen), counterfeit DHA-piperaquine containing sildenafil, counterfeit artemether-lumefantrine containing pyrimethamine, counterfeit halofantrine containing artemisinin, and substandard/counterfeit or degraded artesunate and artesunate+amodiaquine in eight countries are described. Pollen analysis was consistent with manufacture of counterfeits in eastern Asia. These data do not allow estimation of the frequency of poor quality anti-malarials in Africa. Conclusions Criminals are producing diverse harmful anti-malarial counterfeits with important public health consequences. The presence of artesunate monotherapy, substandard and/or degraded and counterfeit medicines containing sub-therapeutic amounts of unexpected anti-malarials will engender drug resistance. With the threatening spread of artemisinin resistance to Africa, much greater investment is required to ensure the quality of ACTs and removal of artemisinin monotherapies. The International Health Regulations may need to be invoked to counter these serious public health problems.</p
    corecore