431 research outputs found

    Measurements of Proton, Helium and Muon Spectra at Small Atmospheric Depths with the BESS Spectrometer

    Full text link
    The cosmic-ray proton, helium, and muon spectra at small atmospheric depths of 4.5 -- 28 g/cm^2 were precisely measured during the slow descending period of the BESS-2001 balloon flight. The variation of atmospheric secondary particle fluxes as a function of atmospheric depth provides fundamental information to study hadronic interactions of the primary cosmic rays with the atmosphere.Comment: 21 pages, 11 figures, 4 table

    Measurements of Primary and Atmospheric Cosmic-Ray Spectra with the BESS-TeV Spectrometer

    Get PDF
    Primary and atmospheric cosmic-ray spectra were precisely measured with the BESS-TeV spectrometer. The spectrometer was upgraded from BESS-98 to achieve seven times higher resolution in momentum measurement. We report absolute fluxes of primary protons and helium nuclei in the energy ranges, 1-540 GeV and 1-250 GeV/n, respectively, and absolute flux of atmospheric muons in the momentum range 0.6-400 GeV/c.Comment: 26 pages, 9 figures, 3 tables, Submitted to Phys. Lett.

    Precise Measurements of Atmospheric Muon Fluxes with the BESS Spectrometer

    Full text link
    The vertical absolute fluxes of atmospheric muons and muon charge ratio have been measured precisely at different geomagnetic locations by using the BESS spectrometer. The observations had been performed at sea level (30 m above sea level) in Tsukuba, Japan, and at 360 m above sea level in Lynn Lake, Canada. The vertical cutoff rigidities in Tsukuba (36.2 N, 140.1 E) and in Lynn Lake (56.5 N, 101.0 W) are 11.4 GV and 0.4 GV, respectively. We have obtained vertical fluxes of positive and negative muons in a momentum range from 0.6 to 20 GeV/c with systematic errors less than 3 % in both measurements. By comparing the data collected at two different geomagnetic latitudes, we have seen an effect of cutoff rigidity. The dependence on the atmospheric pressure and temperature, and the solar modulation effect have been also clearly observed. We also clearly observed the decrease of charge ratio of muons at low momentum side with at higher cutoff rigidity region.Comment: 35 pages, 9 figures. Submitted to Astroparticle Physic

    Cys34-cysteinylated human serum albumin is a sensitive plasma marker in oxidative stress-related chronic diseases

    Get PDF
    The degree of oxidized cysteine (Cys) 34 in human serum albumin (HSA), as determined by high performance liquid chromatography (HPLC), is correlated with oxidative stress related pathological conditions. In order to further characterize the oxidation of Cys34-HSA at the molecular level and to develop a suitable analytical method for a rapid and sensitive clinical laboratory analysis, the use of electrospray ionization time-of-flight mass spectrometer (ESI-TOFMS) was evaluated. A marked increase in the cysteinylation of Cys34 occurs in chronic liver and kidney diseases and diabetes mellitus. A significant positive correlation was observed between the Cys-Cys34-HSA fraction of plasma samples obtained from 229 patients, as determined by ESI-TOFMS, and the degree of oxidized Cys34-HSA determined by HPLC. The Cys-Cys34-HSA fraction was significantly increased with the progression of liver cirrhosis, and was reduced by branched chain amino acids (BCAA) treatment. The changes in the Cys-Cys34-HSA fraction were significantly correlated with the alternations of the plasma levels of advanced oxidized protein products, an oxidative stress marker for proteins. The binding ability of endogenous substances (bilirubin and tryptophan) and drugs (warfarin and diazepam) to HSA purified from chronic liver disease patients were significantly suppressed but significantly improved by BCAA supplementation. Interestingly, the changes in this physiological function of HSA in chronic liver disease were correlated with the Cys-Cys34-HSA fraction. In conclusion, ESI-TOFMS is a suitable high throughput method for the rapid and sensitive quantification of Cys-Cys34-HSA in a large number of samples for evaluating oxidative stress related chronic disease progression or in response to a treatment

    Precision Measurement of Cosmic-Ray Antiproton Spectrum

    Full text link
    The energy spectrum of cosmic-ray antiprotons has been measured in the range 0.18 to 3.56 GeV, based on 458 antiprotons collected by BESS in recent solar-minimum period. We have detected for the first time a distinctive peak at 2 GeV of antiprotons originating from cosmic-ray interactions with the interstellar gas. The peak spectrum is reproduced by theoretical calculations, implying that the propagation models are basically correct and that different cosmic-ray species undergo a universal propagation. Future BESS flights toward the solar maximum will help us to study the solar modulation and the propagation in detail and to search for primary antiproton components.Comment: REVTeX, 4 pages including 4 eps figure
    • …
    corecore