25 research outputs found

    Parenthood in survivors of Hodgkin lymphoma: an EORTC-GELA general population case-control study.

    Get PDF
    Contains fulltext : 108966.pdf (publisher's version ) (Open Access)PURPOSE: We investigated the impact of Hodgkin lymphoma (HL) on parenthood, including factors influencing parenthood probability, by comparing long-term HL survivors with matched general population controls. PATIENTS AND METHODS: A Life Situation Questionnaire was sent to 3,604 survivors treated from 1964 to 2004 in successive clinical trials. Responders were matched with controls (1:3 or 4) for sex, country, education, and year of birth (10-year groups). Controls were given an artificial date of start of treatment equal to that of their matched case. The main end point was presence of biologic children after treatment, which was evaluated by using conditional logistic regression analysis. Logistic regression analysis was used to analyze factors influencing spontaneous post-treatment parenthood. RESULTS: In all, 1,654 French and Dutch survivors were matched with 6,414 controls. Median follow-up was 14 years (range, 5 to 44 years). After treatment, the odds ratio (OR) for having children was 0.77 (95% CI, 0.68 to 0.87; P < .001) for survivors compared with controls. Of 898 survivors who were childless before treatment, 46.7% achieved post-treatment parenthood compared with 49.3% of 3,196 childless controls (OR, 0.87; P = .08). Among 756 survivors with children before treatment, 12.4% became parents after HL treatment compared with 22.2% of 3,218 controls with children before treatment (OR, 0.49; P < .001). Treatment with alkylating agents, second-line therapy, and age older than 35 years at treatment appeared to reduce the chances of spontaneous post-treatment parenthood. CONCLUSION: Survivors of HL had slightly but significantly fewer children after treatment than matched general population controls. The difference concerned only survivors who had children before treatment and appears to have more personal than biologic reasons. The chance of successful post-treatment parenthood was 76%

    Etude de la signalisation transmembranaire médiée par les récepteurs 5-HT1D de la sérotonine et de la thyrotropine

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Etude de la signalisation transmembranaire médiée par les récepteurs 5-HT1D de la sérotonine et de la thyrotropine

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Multiple G-protein coupling of the dog thyrotropin receptor.

    No full text
    We investigated, in dog thyroid membranes, the ability of the dog thyrotropin (TSH) receptor to interact with the endogenous G proteins expressed in this tissue. Activation of the receptor led to increased incorporation of the photoreactive GTP analog [alpha-(32)P]GTP azidoanilide into immunoprecipitated alpha subunits of three G protein families: G(s), G(q/11), G(i/o). This effect was not due to a general loss of receptor G protein specificity since carbamylcholine, in the same membrane preparations, only stimulated the binding of the GTP analog to the alpha subunits of G(q/11) proteins. To investigate the multiple coupling of the dog TSH receptor in intact cells, cyclic AMP accumulation, IP(3) formation and (45)Ca2+ efflux experiments were performed. When thyrocytes were pretreated with pertussis toxin (PTX), the TSH receptor-mediated accumulation of cAMP increased by approximately 45% with TSH at 1 mU/ml, suggesting that the TSH receptor coupled to both G(s) and G(i) in vivo. On the other hand, no increase in IP(3) accumulation nor Ca2+ efflux was observed in the presence of thyrotropin. These data in intact cells are thus in contradiction with those obtained in membranes, suggesting that receptor-mediated transmembrane signalling may implicate a specificity which itself may reflect a localization and organization of the different components (receptors, G proteins, ) in the plasma membrane of intact cells. As in some cells, G(i) activates mitogenesis by hormone activated G-protein-coupled receptors, we tested its role in the stimulation by TSH of the proliferation of thyrocytes. This was not affected by PTX, suggesting that the mitogenic effect of TSH does not involve G(i)-proteins.Journal Articleinfo:eu-repo/semantics/publishe

    The human thyrotropin receptor activates G-proteins Gs and Gq/11.

    No full text
    The human thyrotropin receptor leads upon activation to the stimulation of phospholipase C and adenylyl cyclase. It is presently not known whether this bifurcating signaling occurs via two different G-proteins (Gq/11 and Gs) or via one G-protein (Gs). Receptor-activated Gs releases beta gamma subunits and alpha s, which then could regulate phospholipase C and adenylyl cyclase, respectively. In order to elucidate the signaling pathways induced by the activated thyroid-stimulating hormone (TSH) receptor, we studied the coupling of the TSH receptor to Gs and Gq/11 in human thyroid membranes. TSH concentration dependently led to the activation of two forms of Gs (Gs short and Gs long) as well as of Gq and G11, demonstrating that signaling pathways induced by TSH already bifurcate in the course of the receptor-G-protein interaction. These data strongly suggest the concept that phospholipase C and adenylyl cyclase activation through the TSH receptor are mediated by Gq/11 and Gs, respectively.In VitroJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Specific activation of the thyrotropin receptor by trypsin.

    No full text
    The identification of 16 different activating mutations in the TSH receptor, found in patients suffering from toxic autonomous adenomas or congenital hyperthyroidism, leads to the concept that this receptor is in a constrained conformation in its wild-type form. We used mild trypsin treatment of CHO-K1 cells or COS-7 cells, stably or transiently transfected with the human TSH receptor, respectively, and measured its consequences on the TSH receptor coupled cascades, i.e. cyclic AMP and inositol-phosphates accumulation. A 2-min, 0.01% trypsin treatment increased stably cyclic AMP but not inositol-phosphates formation. This was not observed after chymotrypsin, thrombin and endoproteinase glu C treatment. The TSH action on cyclic AMP was decreased by only 25%. The effect was also observed in cells expressing the dog TSH receptor. It was not observed in MSH receptor, LH receptor expressing or mock transfected cells (vector alone). It is therefore specific for the TSH receptor, for its action on the Gs/adenylate cyclase cascade, and for the proteolytic cleavage caused by trypsin. Using monoclonal (A. Johnstone and P. Shepherd, personal communication) and polyclonal antibodies directed against the extracellular domain of the TSH receptor, it was shown that treatment by trypsin removes or destroys a VFFEEQ epitope (residues 354-359) from the receptor. The effect mimics the action of TSH as it activates Gs alpha and enhances the action of forskolin. It is not reversible in 1 h. The results support the concept that activation of the receptor (by hormone, autoantibodies, mutations or mild proteolysis) might involve the relief of a built-in negative constrain. They suggest that the C-terminal portion of the large extracellular domain plays a role in the maintenance of this constrain.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Mutation analysis of the Epac--Rap1 signaling pathway in cold thyroid follicular adenomas.

    No full text
    OBJECTIVE: The cyclic AMP (cAMP) cascade is the main regulatory pathway in thyrocytes. Whilst activating mutations in the TSH receptor or in the Gs alpha-subunit, which increase cAMP levels, have been shown to be responsible for 80% of the autonomous adenomas, no such mutations have been observed in the other types of thyroid tumors, suggesting that other mechanisms exist. The discovery of Epac ('exchange nucleotide protein directly activated by cAMP'), a novel cAMP-binding protein, which is strongly expressed in the thyroid, raised the possibility of a role for this protein in the generation of the unexplained cold thyroid follicular adenomas. Thus, we investigated whether activating mutations in either Epac or Rap (the downstream target of Epac) could be responsible for the generation of these thyroid nodules. DESIGN: Epac and Rap1 (Rap1A and Rap1B) cDNAs were sequenced in 10 patients. The sequencing of the cDNAs was realized on both strands in the cold nodule and the juxtanodular tissue of each patient. RESULTS: No mutations in either Epac or Rap1 cDNAs were found. For five patients, a polymorphism in Epac at codon 332 (Gly--Ser) was observed. CONCLUSIONS: In this report, we show that the cAMP--Epac--Rap1 signaling pathway in the thyroid gland does not play a major role in the generation of cold thyroid follicular adenomas, since no mutations in either Epac or Rap1 could be observed in the 10 nodules studied.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families.

    Get PDF
    Thyrotropin is the primary hormone that, via one heptahelical receptor, regulates thyroid cell functions such as secretion, specific gene expression, and growth. In human thyroid, thyrotropin receptor activation leads to stimulation of the adenylyl cyclase and phospholipase C cascades. However, the G proteins involved in thyrotropin receptor action have been only partially defined. In membranes of human thyroid gland, we immunologically identified alpha subunits of the G proteins Gs short, Gs long, Gi1, Gi2, Gi3, G(o) (Go2 and another form of Go, presumably Go1), Gq, G11, G12, and G13. Activation of the thyrotropin (TSH) receptor by bovine TSH led to increased incorporation of the photoreactive GTP analogue [alpha-32P]GTP azidoanilide into immunoprecipitated alpha subunits of all G proteins detected in thyroid membranes. This effect was receptor-dependent and not due to direct G protein stimulation because it was mimicked by TSH receptor-stimulating antibodies of patients suffering from Grave disease and was abolished by a receptor-blocking antiserum from a patient with autoimmune hypothyroidism. The TSH-induced activation of individual G proteins occurred with EC50 values of 5-50 milliunits/ml, indicating that the activated TSH receptor coupled with similar potency to different G proteins. When human thyroid slices were pretreated with pertussis toxin, the TSH receptor-mediated accumulation of cAMP increased by approximately 35% with TSH at 1 milliunits/ml, indicating that the TSH receptor coupled to Gs and G(i). Taken together, these findings show that, at least in human thyroid membranes, in which the protein is expressed at its physiological levels, the TSH receptor resembles a naturally occurring example of a general G protein-activating receptor.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Expression of multiple adenylyl cyclase isoforms in human and dog thyroid.

    No full text
    Although the TSH receptor and Galpha(s), which activate the cAMP cascade in the thyroid gland have been much studied, nothing is known about the adenylyl cyclase (AC) isoforms which are actually involved in this pathway. To characterize the cAMP generation in the dog and human thyroid gland, resulting from the presence of distinct adenylyl cyclase families, the responses to various agents (Ca2+, calmodulin (CaM), phorbol esters (TPA) and thapsigargin (Tg)) were studied. These experiments suggest a role of at least two families of cyclases: cyclases negatively modulated by Ca2+ (ACV or ACVI) and cyclases positively modulated by PKC (ACII, ACIII or ACVII). To further analyze by other experimental procedures the expression pattern of the cyclase isoforms in the thyroid gland, Northern blotting, Western blotting and RT-PCR experiments were performed. The results clearly suggest that in both species, three different adenylyl cyclases ACIII, ACVI and ACIX are mainly expressed in thyrocytes.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore