35 research outputs found

    ASCT2 regulates glutamine uptake and cell growth in endometrial carcinoma

    Get PDF
    Glutamine commonly becomes a conditionally essential amino acid in cancer. Glutamine is supplied to the cell by transporters such as ASCT2 (SLC1A5), which is frequently upregulated in multiple cancers. Here we investigated the expression of ASCT2 in endometrial carcinoma, and evaluated the contribution of ASCT2 to glutamine uptake and endometrial cancer cell growth. Analysis of human gene expression data showed that ASCT2 was significantly upregulated in both endometrioid and serous subtypes of endometrial carcinoma, compared to normal, age-matched endometrium. Furthermore, immunohistochemical staining of primary human endometrioid adenocarcinomas showed that tumours stain positive for ASCT2 in either a uniform or mosaic expression pattern, while normal adjacent glands appeared predominantly negative for ASCT2 staining. Chemical inhibition of glutamine transport by benzylserine or GPNA led to a significant decrease in endometrial cancer cell growth and spheroid cross-sectional area. ASCT2 knockdown recapitulated the decrease of cell growth and spheroid cross-sectional area in HEC1A cells, suggesting a reliance on ASCT2-mediated glutamine uptake. ASCT2 knockdown in Ishikawa cells led to lower glutamine uptake and cell growth, but did not affect spheroid area. Ishikawa cells express higher levels of the glutamine transporter SNAT1 compared to HEC1A cells, suggesting these cells may rely on both ASCT2 and SNAT1 for glutamine uptake. Since SNAT1 is also significantly upregulated in the endometrioid and serous subtypes, these data indicate that ASCT2 and SNAT1 could be used as markers of malignancy, and/or potential therapeutic targets in patients with endometrial carcinoma

    CTCF genetic alterations in endometrial carcinoma are pro-tumorigenic

    Get PDF
    CTCF is a haploinsufficient tumour suppressor gene with diverse normal functions in genome structure and gene regulation. However the mechanism by which CTCF haploinsufficiency contributes to cancer development is not well understood. CTCF is frequently mutated in endometrial cancer. Here we show that most CTCF mutations effectively result in CTCF haploinsufficiency through nonsense-mediated decay of mutant transcripts, or loss-of-function missense mutation. Conversely, we identified a recurrent CTCF mutation K365T, which alters a DNA binding residue, and acts as a gain-of-function mutation enhancing cell survival. CTCF genetic deletion occurs predominantly in poor prognosis serous subtype tumours, and this genetic deletion is associated with poor overall survival. In addition, we have shown that CTCF haploinsufficiency also occurs in poor prognosis endometrial clear cell carcinomas and has some association with endometrial cancer relapse and metastasis. Using shRNA targeting CTCF to recapitulate CTCF haploinsufficiency, we have identified a novel role for CTCF in the regulation of cellular polarity of endometrial glandular epithelium. Overall, we have identified two novel pro-tumorigenic roles (promoting cell survival and altering cell polarity) for genetic alterations of CTCF in endometrial cancer

    Bidirectional nucleolar dysfunction in C9orf72 frontotemporal lobar degeneration

    Get PDF
    An intronic GGGGCC expansion in C9orf72 is the most common known cause of both frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The repeat expansion leads to the generation of sense and antisense repeat RNA aggregates and dipeptide repeat (DPR) proteins, generated by repeat-associated non-ATG translation. The arginine-rich DPR proteins poly(glycine-arginine or GR) and poly(proline-arginine or PR) are potently neurotoxic and can localise to the nucleolus when expressed in cells, resulting in enlarged nucleoli with disrupted functionality. Furthermore, GGGGCC repeat RNA can bind nucleolar proteins in vitro. However, the relevance of nucleolar stress is unclear, as the arginine-rich DPR proteins do not localise to the nucleolus in C9orf72-associated FTLD/ALS (C9FTLD/ALS) patient brain. We measured nucleolar size in C9FTLD frontal cortex neurons using a three-dimensional, volumetric approach. Intriguingly, we found that C9FTLD brain exhibited bidirectional nucleolar stress. C9FTLD neuronal nucleoli were significantly smaller than control neuronal nucleoli. However, within C9FTLD brains, neurons containing poly(GR) inclusions had significantly larger nucleolar volumes than neurons without poly(GR) inclusions. In addition, expression of poly(GR) in adult Drosophila neurons led to significantly enlarged nucleoli. A small but significant increase in nucleolar volume was also observed in C9FTLD frontal cortex neurons containing GGGGCC repeat-containing RNA foci. These data show that nucleolar abnormalities are a consistent feature of C9FTLD brain, but that diverse pathomechanisms are at play, involving both DPR protein and repeat RNA toxicity

    Sense and antisense RNA are not toxic in <i>Drosophila </i>models of <i>C9orf72</i>-associated ALS/FTD

    Get PDF
    A GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Neurodegeneration may occur via transcription of the repeats into inherently toxic repetitive sense and antisense RNA species, or via repeat-associated non-ATG initiated translation (RANT) of sense and antisense RNA into toxic dipeptide repeat proteins. We have previously demonstrated that regular interspersion of repeat RNA with stop codons prevents RANT (RNA-only models), allowing us to study the role of repeat RNA in isolation. Here we have created novel RNA-only Drosophila models, including the first models of antisense repeat toxicity, and flies expressing extremely large repeats, within the range observed in patients. We generated flies expressing ~ 100 repeat sense or antisense RNA either as part of a processed polyadenylated transcript or intronic sequence. We additionally created Drosophila expressing > 1000 RNA-only repeats in the sense direction. When expressed in adult Drosophila neurons polyadenylated repeat RNA is largely cytoplasmic in localisation, whilst intronic repeat RNA forms intranuclear RNA foci, as does > 1000 repeat RNA, thus allowing us to investigate both nuclear and cytoplasmic RNA toxicity. We confirmed that these RNA foci are capable of sequestering endogenous Drosophila RNA-binding proteins, and that the production of dipeptide proteins (poly-glycine-proline, and poly-glycine-arginine) is suppressed in our models. We find that neither cytoplasmic nor nuclear sense or antisense RNA are toxic when expressed in adult Drosophila neurons, suggesting they have a limited role in disease pathogenesis

    LAT1 is a putative therapeutic target in endometrioid endometrial carcinoma

    No full text
    L-type amino acid transporters (LAT1-4) are expressed in various cancer types and are involved in the uptake of essential amino acids such as leucine. Here we investigated the expression of LAT1-4 in endometrial adenocarcinoma and evaluated the contribution of LATs to endometrial cancer cell growth. Analysis of human gene expression data showed that all four LAT family members are expressed in endometrial adenocarcinomas. LAT1 was the most highly expressed, and showed a significant increase in both serous and endometrioid subtypes compared to normal endometrium. Endometrioid patients with the highest LAT1 levels exhibited the lowest disease-free survival. The pan-LAT inhibitor BCH led to a significant decrease in cell growth and spheroid area in four endometrial cancer cell lines tested in vitro. Knockdown of LAT1 by shRNA inhibited cell growth in HEC1A and Ishikawa cells, as well as inhibiting spheroid area in HEC1A cells. These data show that LAT1 plays an important role in regulating the uptake of essential amino acids such as leucine into endometrial cancer cells. Increased ability of BCH compared to LAT1 shRNA at inhibiting Ishikawa spheroid area suggests that other LAT family members may also contribute to cell growth. LAT1 inhibition may offer an effective therapeutic strategy in endometrial cancer patients whose tumours exhibit high LAT1 expression

    Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression

    No full text
    l-Type amino acid transporters such as LAT1 and LAT3 mediate the uptake of essential amino acids. Here, we report that prostate cancer cells coordinate the expression of LAT1 and LAT3 to maintain sufficient levels of leucine needed for mTORC1 signaling and cell growth. Inhibiting LAT function was sufficient to decrease cell growth and mTORC1 signaling in prostate cancer cells. These cells maintained levels of amino acid influx through androgen receptor–mediated regulation of LAT3 expression and ATF4 regulation of LAT1 expression after amino acid deprivation. These responses remained intact in primary prostate cancer, as indicated by high levels of LAT3 in primary disease, and by increased levels of LAT1 after hormone ablation and in metastatic lesions. Taken together, our results show how prostate cancer cells respond to demands for increased essential amino acids by coordinately activating amino acid transporter pathways vital for tumor outgrowth

    A monocarboxylate transporter rescues frontotemporal dementia and Alzheimer's disease models.

    No full text
    Brains are highly metabolically active organs, consuming 20% of a person's energy at resting state. A decline in glucose metabolism is a common feature across a number of neurodegenerative diseases. Another common feature is the progressive accumulation of insoluble protein deposits, it's unclear if the two are linked. Glucose metabolism in the brain is highly coupled between neurons and glia, with glucose taken up by glia and metabolised to lactate, which is then shuttled via transporters to neurons, where it is converted back to pyruvate and fed into the TCA cycle for ATP production. Monocarboxylates are also involved in signalling, and play broad ranging roles in brain homeostasis and metabolic reprogramming. However, the role of monocarboxylates in dementia has not been tested. Here, we find that increasing pyruvate import in Drosophila neurons by over-expression of the transporter bumpel, leads to a rescue of lifespan and behavioural phenotypes in fly models of both frontotemporal dementia and Alzheimer's disease. The rescue is linked to a clearance of late stage autolysosomes, leading to degradation of toxic peptides associated with disease. We propose upregulation of pyruvate import into neurons as potentially a broad-scope therapeutic approach to increase neuronal autophagy, which could be beneficial for multiple dementias
    corecore