200 research outputs found

    Embryogenèse somatique chez le cotonnier (Gossypium hirsutum L.) : évolution des composés lipidiques au cours de la callogenèse et de la culture de suspensions cellulaires

    Get PDF
    L’implication des lipides dans le processus de l’embryogenèse somatique a été étudiée chez deux variétés de cotonnier (Gossypium hirsutum L.) : Coker 312, variété embryogène et ISA 205N, variété non embryogène. Le taux de lipides totaux de la variété ISA 205N est en général plus élevé que celui de la variété Coker 312. Ce taux atteint son optimum à la première subculture des cals et décroît par la suite régulièrement au cours de la culture de cellules. L’analyse qualitative des lipides montre que la composition lipidique des cals est identique chez les deux variétés. Cependant, on observe une accumulation de phospholipides sous forme de phosphocholine triacylglycérol (PTG) dans les suspensions cellulaires embryogènes de la variété Coker 312, contre une accumulation de galactolipides sous forme de digalactosyl diacylglycérol (DGDG) dans les suspensions cellulaires non embryogènes de la variété ISA 205N. Le PTG semble favoriser l’embryogenèse somatique tandis que le DGDG serait une cause de l’inhibition de l’embryogenèse somatique chez le cotonnier.Mots-clés : Gossypium hirsutum L., lipide, cal, suspension cellulaire, embryogenèse somatique

    Low thermal conductivity of the layered oxide (Na,Ca)Co_2O_4: Another example of a phonon glass and an electron crystal

    Full text link
    The thermal conductivity of polycrystalline samples of (Na,Ca)Co_2O_4 is found to be unusually low, 20 mW/cmK at 280 K. On the assumption of the Wiedemann-Franz law, the lattice thermal conductivity is estimated to be 18 mW/cmK at 280 K, and it does not change appreciably with the substitution of Ca for Na. A quantitative analysis has revealed that the phonon mean free path is comparable with the lattice parameters, where the point-defect scattering plays an important role. Electronically the same samples show a metallic conduction down to 4.2 K, which strongly suggests that NaCo_2O_4 exhibits a glass-like poor thermal conduction together with a metal-like good electrical conduction. The present study further suggests that a strongly correlated system with layered structure can act as a material of a phonon glass and an electron crystal.Comment: 5 pages 3 figures, to be published in Phys. Rev.

    PITX2 Modulates Atrial Membrane Potential and the Antiarrhythmic Effects of Sodium-Channel Blockers.

    Get PDF
    BACKGROUND: Antiarrhythmic drugs are widely used to treat patients with atrial fibrillation (AF), but the mechanisms conveying their variable effectiveness are not known. Recent data suggested that paired like homeodomain-2 transcription factor (PITX2) might play an important role in regulating gene expression and electrical function of the adult left atrium (LA). OBJECTIVES: After determining LA PITX2 expression in AF patients requiring rhythm control therapy, the authors assessed the effects of Pitx2c on LA electrophysiology and the effect of antiarrhythmic drugs. METHODS: LA PITX2 messenger ribonucleic acid (mRNA) levels were measured in 95 patients undergoing thoracoscopic AF ablation. The effects of flecainide, a sodium (Na(+))-channel blocker, and d,l-sotalol, a potassium channel blocker, were studied in littermate mice with normal and reduced Pitx2c mRNA by electrophysiological study, optical mapping, and patch clamp studies. PITX2-dependent mechanisms of antiarrhythmic drug action were studied in human embryonic kidney (HEK) cells expressing human Na channels and by modeling human action potentials. RESULTS: Flecainide 1 μmol/l was more effective in suppressing atrial arrhythmias in atria with reduced Pitx2c mRNA levels (Pitx2c(+/-)). Resting membrane potential was more depolarized in Pitx2c(+/-) atria, and TWIK-related acid-sensitive K(+) channel 2 (TASK-2) gene and protein expression were decreased. This resulted in enhanced post-repolarization refractoriness and more effective Na-channel inhibition. Defined holding potentials eliminated differences in flecainide's effects between wild-type and Pitx2c(+/-) atrial cardiomyocytes. More positive holding potentials replicated the increased effectiveness of flecainide in blocking human Nav1.5 channels in HEK293 cells. Computer modeling reproduced an enhanced effectiveness of Na-channel block when resting membrane potential was slightly depolarized. CONCLUSIONS: PITX2 mRNA modulates atrial resting membrane potential and thereby alters the effectiveness of Na-channel blockers. PITX2 and ion channels regulating the resting membrane potential may provide novel targets for antiarrhythmic drug development and companion therapeutics in AF

    Plasma miRNA as Biomarkers for Assessment of Total-Body Radiation Exposure Dosimetry

    Get PDF
    The risk of radiation exposure, due to accidental or malicious release of ionizing radiation, is a major public health concern. Biomarkers that can rapidly identify severely-irradiated individuals requiring prompt medical treatment in mass-casualty incidents are urgently needed. Stable blood or plasma-based biomarkers are attractive because of the ease for sample collection. We tested the hypothesis that plasma miRNA expression profiles can accurately reflect prior radiation exposure. We demonstrated using a murine model that plasma miRNA expression signatures could distinguish mice that received total body irradiation doses of 0.5 Gy, 2 Gy, and 10 Gy (at 6 h or 24 h post radiation) with accuracy, sensitivity, and specificity of above 90%. Taken together, these data demonstrate that plasma miRNA profiles can be highly predictive of different levels of radiation exposure. Thus, plasma-based biomarkers can be used to assess radiation exposure after mass-casualty incidents, and it may provide a valuable tool in developing and implementing effective countermeasures

    High-dimensional phenotyping of the peripheral immune response in community-acquired pneumonia

    Get PDF
    BackgroundCommunity-acquired pneumonia (CAP) represents a major health burden worldwide. Dysregulation of the immune response plays an important role in adverse outcomes in patients with CAP.MethodsWe analyzed peripheral blood mononuclear cells by 36-color spectral flow cytometry in adult patients hospitalized for CAP (n=40), matched control subjects (n=31), and patients hospitalized for COVID-19 (n=35).ResultsWe identified 86 immune cell metaclusters, 19 of which (22.1%) were differentially abundant in patients with CAP versus matched controls. The most notable differences involved classical monocyte metaclusters, which were more abundant in CAP and displayed phenotypic alterations reminiscent of immunosuppression, increased susceptibility to apoptosis, and enhanced expression of chemokine receptors. Expression profiles on classical monocytes, driven by CCR7 and CXCR5, divided patients with CAP into two clusters with a distinct inflammatory response and disease course. The peripheral immune response in patients with CAP was highly similar to that in patients with COVID-19, but increased CCR7 expression on classical monocytes was only present in CAP.ConclusionCAP is associated with profound cellular changes in blood that mainly relate to classical monocytes and largely overlap with the immune response detected in COVID-19

    Thermoelectric generator (TEG) technologies and applications

    Get PDF
    2021 The Author(s). Nowadays humans are facing difficult issues, such as increasing power costs, environmental pollution and global warming. In order to reduce their consequences, scientists are concentrating on improving power generators focused on energy harvesting. Thermoelectric generators (TEGs) have demonstrated their capacity to transform thermal energy directly into electric power through the Seebeck effect. Due to the unique advantages they present, thermoelectric systems have emerged during the last decade as a promising alternative among other technologies for green power production. In this regard, thermoelectric device output prediction is important both for determining the future use of this new technology and for specifying the key design parameters of thermoelectric generators and systems. Moreover, TEGs are environmentally safe, work quietly as they do not include mechanical mechanisms or rotating elements and can be manufactured on a broad variety of substrates such as silicon, polymers and ceramics. In addition, TEGs are position-independent, have a long working life and are ideal for bulk and compact applications. Furthermore, Thermoelectric generators have been found as a viable solution for direct generation of electricity from waste heat in industrial processes. This paper presents in-depth analysis of TEGs, beginning with a comprehensive overview of their working principles such as the Seebeck effect, the Peltier effect, the Thomson effect and Joule heating with their applications, materials used, Figure of Merit, improvement techniques including different thermoelectric material arrangements and technologies used and substrate types. Moreover, performance simulation examples such as COMSOL Multiphysics and ANSYS-Computational Fluid Dynamics are investigated
    corecore