1,237 research outputs found

    Phenotypic and genetic variation in the Dothistroma – Pinus pathosystem

    Get PDF
    Trees and forests are under increasing threat from pathogens which cause huge economic and ecological damage. The unprecedented global movement of pathogens into new areas creates novel pathosystems, while the changing climate affects the dynamics of endemic pathosystems. Co-evolution within endemic pathosystems affects the genetic composition of hosts and pathogens. Spatial heterogeneity in pathogen pressure leads to genetic variation in disease-related traits among host populations. In contrast, novel hosts or populations are expected to be highly susceptible to exotic pathogens as there has been no evolution of defence responses. Host response to disease can therefore be an indicator of a novel or endemic pathosystem. The long term resilience of forests to pathogens depends on the adaptive capacity of both the host and pathogen species. Establishing the extent of genetic and phenotypic variation within both the host and pathogen is therefore fundamental in understanding past, current and future pathosystem dynamics. The most significant current threat to Scots pine (Pinus sylvestris) is Dothistroma needle blight (DNB) caused by the foliar pathogen Dothistroma septosporum which is assumed to be exotic to Great Britain. This study aimed to increase understanding of the genetic and phenotypic variation in this pathosystem. Results from this study show that there are high levels of variation in the Dothistroma – Pinus pathosystem. Genetic variation, elucidated using neutral genetic markers, mating type specific markers and in vitro analysis of phenotypic variation in D. septosporum collected from Scottish pinewoods, was found to be high: there was high allelic diversity, particularly within plantation forests outside the native pinewood range, and high phenotypic plasticity in response to different temperature treatments. Both mating type idiomorphs were found in one forest which demonstrates their potential for sexual as well as asexual reproduction. There is also tentative evidence from this study that the pathogen is either introduced to Great Britain or that endemic pathogen populations have been augmented with introduced pathogens. Artificial and natural inoculations of native Scots pine provenances with D. septosporum indicate that there is considerable variation in susceptibility to DNB across the native range in Scotland and that variation in this trait is both highly heritable and evolvable. Furthermore, provenance mean susceptibility to DNB is negatively and significantly associated with water-related variables at site of origin, a finding that is potentially indicative of a co-evolutionary history between host and pathogen. Genetic differences among individuals which are ‘resistant’ or ‘susceptible’ to DNB were identified in Pinus radiata for which there has been extensive research in this pathosystem, by comparing the transcriptome sequences of the two phenotypic groups. Nearly half of the genetic differences identified among phenotypes were found in genes with a putative defence function. In conclusion, native Scots pine provenances contain the necessary heritable genetic diversity to evolve a decrease in their susceptibility to D. septosporum through natural selection in response to elevated prevalence of this pathogen. However, implementation of key native pinewood management strategies, including encouraging regeneration in particular, are necessary in order to facilitate the adaptive evolution of native forests to increased levels of DNB. The effectiveness of this response will depend on the rapidity of adaptation of the pathogen. Measures to limit adaptation where possible, including the use of pathogen monitoring and control in nurseries and the limitation of pathogen movement into native pinewoods, should be continued

    Development of a single nucleotide polymorphism array for population genomic studies in four European pine species

    Get PDF
    Pines are some of the most ecologically and economically important tree species in the world, and many have enormous natural distributions or have been extensively planted. However, a lack of rapid genotyping capability is hampering progress in understanding the molecular basis of genetic variation in these species. Here, we deliver an efficient tool for genotyping thousands of single nucleotide polymorphism (SNP) markers across the genome that can be applied to genetic studies in pines. Polymorphisms from resequenced candidate genes and transcriptome sequences of P. sylvestris, P. mugo, P. uncinata, P. uliginosa and P. radiata were used to design a 49,829 SNP array (Axiom_PineGAP, Thermo Fisher). Over a third (34.68%) of the unigenes identified from the P. sylvestris transcriptome were represented on the array, which was used to screen samples of four pine species. The conversion rate for the array on all samples was 42% (N = 20,795 SNPs) and was similar for SNPs sourced from resequenced candidate gene and transcriptome sequences. The broad representation of gene ontology terms by unigenes containing converted SNPs reflected their coverage across the full transcriptome. Over a quarter of successfully converted SNPs were polymorphic among all species, and the data were successful in discriminating among the species and some individual populations. The SNP array provides a valuable new tool to advance genetic studies in these species and demonstrates the effectiveness of the technology for rapid genotyping in species with large and complex genomes

    Rangewide ploidy variation and evolution in Acacia senegal: a north-south divide?

    Get PDF
    Knowledge of rangewide variation in DNA content and ploidy level may be valuable in understanding the evolutionary history of a species. Recent studies of Acacia senegal report diploids and occasional tetraploids in the Sudano-Sahelian region of sub-Saharan Africa, but nothing is known about the overall extent of DNA ploidy variation within the species. In this study, we determine the DNA content and ploidy level of A. senegal across its native range, and explore whether the variation is related to its evolutionary and colonization history. We used propidium iodide flow cytometry (FCM) to estimate DNA content (2C value) and infer ploidy in 157 individuals from 54 populations on various tissues, using seeds, fresh leaves, dried leaves and twigs and herbarium specimens. The mean 2C DNA (pg ± s.d.) contents detected were 1.47 ± 0.09, 2.12 ± 0.02, 2.89 ± 0.12, and a single individual with 4.51 pg, corresponding to a polyploid series of diploid, triploid, tetraploid and hexaploid individuals. Diploids were confirmed by chromosome counts (2n = 2x = 26). Most populations (90.7 %) were of single ploidy level, while mixed ploidy populations (9.3 %) comprising mostly diploids (2x+3x, 2x+4x and 2x+6x) were restricted to the Sudano-Sahelian and Indian subcontinent regions, its northern range. The species is predominantly diploid, and no mixed ploidy populations were detected in east and southern Africa, its southern range. The geographic pattern of ploidy variation in conjunction with existing phylogeographic and phylogenetic data of the species suggests that polyploids have occurred multiple times in its evolutionary and recent colonization history, including contemporary ecological timescales. The successful use of external tissues of dried twigs in FCM is new, and presents the opportunity to study numerous other dryland woody species

    Identifying and testing marker–trait associations for growth and phenology in three pine species:Implications for genomic prediction

    Get PDF
    In tree species, genomic prediction offers the potential to forecast mature trait values in early growth stages, if robust marker-trait associations can be identified. Here we apply a novel multispecies approach using genotypes from a new genotyping array, based on 20,795 SNPs from three closely related pine species (Pinus sylvestris, Pinus uncinata and Pinus mugo), to test for associations with growth and phenology data from a common garden study. Predictive models constructed using significantly associated SNPs were then tested and applied to an independent multisite field trial of P. sylvestris and the capability to predict trait values was evaluated. One hundred and eighteen SNPs showed significant associations with the traits in the pine species. Common SNPs (MAF > 0.05) associated with bud set were only found in genes putatively involved in growth and development, whereas those associated with growth and budburst were also located in genes putatively involved in response to environment and, to a lesser extent, reproduction. At one of the two independent sites, the model we developed produced highly significant correlations between predicted values and observed height data (YA, height 2020: r = 0.376, p < 0.001). Predicted values estimated with our budburst model were weakly but positively correlated with duration of budburst at one of the sites (GS, 2015: r = 0.204, p = 0.034; 2018: r = 0.205, p = 0.034-0.037) and negatively associated with budburst timing at the other (YA: r = -0.202, p = 0.046). Genomic prediction resulted in the selection of sets of trees whose mean height was taller than the average for each site. Our results provide tentative support for the capability of prediction models to forecast trait values in trees, while highlighting the need for caution in applying them to trees grown in different environments

    Alternation between short- and long photoperiod reveals hypothalamic gene regulation linked to seasonal body weight changes in Djungarian hamsters (Phodopus sungorus)

    Get PDF
    This work was funded by the German Research Foundation (DFG, Emmy-Noether HE6383 to AH) and the British Society for Neuroendocrinology (Research grant to JB). The authors declare that they have no conflicts of interest.Peer reviewedPostprin

    Seasonal Control of Mammalian Energy Balance : Recent advances in the understanding of daily torpor and hibernation

    Get PDF
    Funding This work was supported in part by BBSRC grant (BB/M001504/1) to PB, DFG Emmy-Noether HE6383 to AH, German Center for Diabetes Research (DZD) to MJ.Peer reviewedPostprin

    Seasonal Control of Mammalian Energy Balance : Recent advances in the understanding of daily torpor and hibernation

    Get PDF
    Funding This work was supported in part by BBSRC grant (BB/M001504/1) to PB, DFG Emmy-Noether HE6383 to AH, German Center for Diabetes Research (DZD) to MJ.Peer reviewedPostprin

    Orchestration of gene expression across the seasons : Hypothalamic gene expression in natural photoperiod throughout the year in the Siberian hamster

    Get PDF
    Acknowledgements Funding for work in the laboratory of PB was supported by Scottish Government Rural and Environment Science and Analytical Services Division, BBSRC (grant BB/M001504/1), British Society for Neuroendocrinology (research visit grant to IP). Work in the laboratory of SS was supported by a grant from the DFG (Ste 331/8-1). We thank Siegried Hilken, Marianne Brüning, Dr. Esther Lipokatic-Takacs and Dr. Frank Scherbarth at UVMH for technical assistance. We thank Graham Horgan of Bioinformatics, Statistics Scotland for assistance with some of statistical tests.Peer reviewedPublisher PD

    Genetic structure in the European endemic seabird, Phalacrocorax aristotelis, shaped by a complex interaction of historical and contemporary, physical and nonphysical drivers

    Get PDF
    Geographically separated populations tend to be less connected by gene flow, as a result of physical or non-physical barriers preventing dispersal, and this can lead to genetic structure. In this context, highly mobile organisms such as seabirds are interesting because the small effect of physical barriers means non-physical ones may be relatively more important. Here we use microsatellite and mitochondrial data to explore the genetic structure and phylogeography of Atlantic and Mediterranean populations of a European endemic seabird, the European Shag, Phalacrocorax aristotelis, and identify the primary drivers of their diversification. Analyses of mitochondrial markers revealed three phylogenetic lineages grouping the North Atlantic, Spanish/Corsican and Eastern Mediterranean populations, apparently arising from fragmentation during the Pleistocene followed by range expansion. These traces of historical fragmentation were also evident in the genetic structure estimated by microsatellite markers, despite significant contemporary gene flow among adjacent populations. Stronger genetic structure, probably promoted by landscape, philopatry and local adaptation, was found among distant populations and those separated by physical and ecological barriers. This study highlights the enduring effect of Pleistocene climatic changes on shag populations, especially within the Mediterranean Basin, and suggests a role for cryptic northern refugia, as well as known southern refugia, on the genetic structure of European seabirds. Finally, it outlines how contemporary ecological barriers and behavioral traits may maintain population divergence, despite long-distance dispersal triggered by extreme environmental conditions (e.g. population crashes)

    Invasion, isolation and evolution shape population genetic structure in Campanula rotundifolia

    Get PDF
    The distribution and genetic structure of most plant species in Britain and Ireland bear the imprint of the last ice age. These patterns were largely shaped by random processes during recolonization but, in angiosperms, whole-genome duplication may also have been important. We investigate the distribution of cytotypes of Campanula rotundifolia, considering DNA variation, postglacial colonization, environmental partitioning and reproductive barriers. Cytotypes and genome size variation from across the species’ range were determined by flow cytometry and genetic variation was assessed using cpDNA markers. A common garden study examined growth and flowering phenology of tetraploid, pentaploid and hexaploid cytotypes and simulated a contact zone for investigation of reproductive barriers. Irish populations were entirely hexaploid. In Britain, hexaploids occurred mostly in western coastal populations which were allopatric with tetraploids, and in occasional sympatric inland populations. Chloroplast markers resolved distinct genetic groups, related to cytotype and geographically segregated; allopatric hexaploids were distinct from tetraploids, whereas sympatric hexaploids were not. Genome downsizing occurred between cytotypes. Progeny of open-pollinated clones from the contact zone showed that maternal tetraploids rarely produced progeny of other cytotypes, whereas the progeny of maternal hexaploids varied, with frequent pentaploids and aneuploids. The presence of distinctive hexaploid chloroplast types in Ireland, Scottish islands and western mainland Britain indicates that its establishment preceded separation of these land masses by sea-level rise c. 16 000 years BP. This group did not originate from British tetraploids and probably diverged before postglacial invasion from mainland Europe. The combination of cytotype, molecular, contact zone and common garden data shows an overall pattern reflecting postglacial colonization events, now maintained by geographic separation, together with more recent occasional local in situ polyploidisation. Reproductive barriers favour the persistence of the tetraploid to the detriment of the hexaploid
    corecore