90 research outputs found

    Assessment of Creative Thinking of Hong Kong Undergraduate Students Using the Torrance Tests of Creative Thinking

    Full text link
    [EN] Creativity has been a key graduate attribute and transferrable skill for the universities nowadays. A better understanding of freshmen students’ level of creativity thinking facilitates the cultivation of the ways for nurturing the development of creativity in students throughout their university education studies. The purpose of this study was to investigate creative thinking abilities of first-year undergraduates in Hong Kong using the Torrance Tests of Creativity Thinking (TTCT) – a commonly known assessment for creativity. A total of 492 first-year undergraduates at a university in Hong Kong were asked to complete TTCT Figural Form consisting of picture construction, picture completion and lines activities. Generally, the creative potential of Hong Kong undergraduates was well above the average. The students demonstrated their abilities in generation of a number of relevant ideas (fluency), producing novel responses (originality), abstract thinking (abstractness of titles), and open-minded thinking (premature closure). They exhibited creative strength of, for example, flexible imagination, thinking with senses, and thinking beyond boundaries. However, students’ elaborative thinking, metaphorical-thinking and sense of humor had a lot of room for improvement. Based on the assessment results, some implications on the possible institutional strategies for nurturing creativity among students during university education were discussed.Ng, AWY.; Lee, C. (2019). Assessment of Creative Thinking of Hong Kong Undergraduate Students Using the Torrance Tests of Creative Thinking. En HEAD'19. 5th International Conference on Higher Education Advances. Editorial Universitat Politècnica de València. 1-8. https://doi.org/10.4995/HEAD19.2019.9051OCS1

    Wnt activation downregulates olfactomedin-1 in Fallopian tubal epithelial cells:a microenvironment predisposed to tubal ectopic pregnancy

    Get PDF
    Ectopic pregnancy (EP) occurs when the embryo fails to transit to the uterus and attach to the luminal epithelium of the Fallopian tube (FT). Tubal EP is a common gynecological emergency and more than 95% of EP occurs in the ampullary region of the FT. In humans, Wnt activation and downregulation of olfactomedin-1 (Olfm-1) occur in the receptive endometrium and coincided with embryo implantation in vivo. Whether similar molecular changes happen in the FT leading to EP remains unclear. We hypothesized that activation of Wnt signaling downregulates Olfm-1 expression predisposes to EP. We investigated the spatiotemporal expression of Olfm-1 in FT from non-pregnant women and women with EP, and used a novel trophoblastic spheroid (embryo surrogate)-FT epithelial cell co-culture model (JAr and OE-E6/E7 cells) to study the role of Olfm-1 on spheroid attachment. Olfm-1 mRNA expression in the ampullary region of non-pregnant FT was higher (P0.05) in the follicular phase than in the luteal phase. Ampullary tubal Olfm-1 expression was lower in FT from women with EP compared to normal controls at the luteal phase (histological scoring (H-SCORE)1.30.2 vs 2.40.5; P0.05). Treatment of OE-E6/E7 with recombinant Olfm-1 (0.2-5 g/ml) suppressed spheroid attachment to OE-E6/E7 cells, while activation of Wnt-signaling pathway by Wnt3a or LiCl reduced endogenous Olfm-1 expression and increased spheroid attachment. Conversely, suppression of Olfm-1 expression by RNAi increased spheroid attachment to OE-E6/E7 cells. Taken together, Wnt activation suppresses Olfm-1 expression, and this may predispose a favorable microenvironment of the retained embryo in the FT, leading to EP in humans. © 2012 USCAP, Inc All rights reserved.link_to_OA_fulltex

    Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of Disrupted Ribosome Biogenesis

    No full text
    Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (tti(s450)), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In tti(s450), the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in tti(s450) larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in tti(s450) larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death.This research was funded by the National Health and Medical Research Council of Australia through Project grant 433614 (JKH), Program grant 487922 (JKH), a Senior Research Fellowship (JKH), and a Howard Florey Centenary Fellowship (HV). Operational Infrastructure Support was provided by the Victorian Government, Australia. Additional support was from Australian Research Council grant DP0346823 (GJL); NIH grant DK060322 (DYRS); and CDMRP, Department of Defense, USA W81XWH-10-1-0854 (KCE)

    Injecting drug use, the skin and vasculature

    Get PDF
    Damage to the skin, subcutaneous tissues and blood vessels are among the most common health harms related to injecting drug use. From a limited range of early reports of injecting-related skin and soft tissue damage there is now an increasing literature relating to new drugs, new contaminants and problems associated with unsafe injection practices. Clinical issues range from ubiquitous problems associated with repeated minor localised injection trauma to skin and soft tissue and infections around injection sites, to systemic blood infections and chronic vascular disease. The interplay of limited availability and access to sterile injecting equipment, poor injecting technique, compromised drug purity, drug toxicity and difficult personal and environmental conditions give rise to injection-related health harms. This review of injecting-related skin, soft tissue and vascular damage focuses on epidemiology and causation, clinical examination and investigation, treatment and prevention

    Wild Type and Mutant 2009 Pandemic Influenza A (H1N1) Viruses Cause More Severe Disease and Higher Mortality in Pregnant BALB/c Mice

    Get PDF
    BACKGROUND: Pregnant women infected by the pandemic influenza A (H1N1) 2009 virus had more severe disease and higher mortality but its pathogenesis is still unclear. PRINCIPAL FINDINGS: We showed that higher mortality, more severe pneumonitis, higher pulmonary viral load, lower peripheral blood T lymphocytes and antibody responses, higher levels of proinflammatory cytokines and chemokines, and worse fetal development occurred in pregnant mice than non-pregnant controls infected by either wild type (clinical isolate) or mouse-adapted mutant virus with D222G substitution in hemagglutinin. These disease-associated changes and the lower respiratory tract involvement were worse in pregnant mice challenged by mutant virus. Though human placental origin JEG-3 cell line could be infected and proinflammatory cytokines or chemokines were elevated in amniotic fluid of some mice, no placental or fetal involvement by virus were detected by culture, real-time reverse transcription polymerase chain reaction or histopathological changes. Dual immunofluorescent staining of viral nucleoprotein and type II alveolar cell marker SP-C protein suggested that the majority of infected alveolar epithelial cells were type II pneumocytes. CONCLUSION: The adverse effect of this pandemic virus on maternal and fetal outcome is largely related to the severe pulmonary disease and the indirect effect of inflammatory cytokine spillover into the systemic circulation

    A RG-II type polysaccharide purified from Aconitum coreanum and their anti-inflammatory activity

    Get PDF
    Korean mondshood root polysaccharides (KMPS) isolated from the root of Aconitum coreanum (Lévl.) Rapaics have shown anti-inflammatory activity, which is strongly influenced by their chemical structures and chain conformations. However, the mechanisms of the anti-inflammatory effect by these polysaccharides have yet to be elucidated. A RG-II polysaccharide (KMPS-2E, Mw 84.8 kDa) was isolated from KMPS and its chemical structure was characterized by FT-IR and NMR spectroscopy, gas chromatography–mass spectrometry and high-performance liquid chromatography. The backbone of KMPS-2E consisted of units of [→6) -β-D-Galp (1→3)-β-L-Rhap-(1→4)-β-D-GalpA-(1→3)-β-D-Galp-(1→] with the side chain →5)-β-D-Arap (1→3, 5)-β-D-Arap (1→ attached to the backbone through O-4 of (1→3,4)-L-Rhap. T-β-D-Galp is attached to the backbone through O-6 of (1→3,6)-β-D-Galp residues and T-β-D-Ara is connected to the end group of each chain. The anti-inflammatory effects of KMPS-2E and the underlying mechanisms using lipopolysaccharide (LPS) - stimulated RAW 264.7 macrophages and carrageenan-induced hind paw edema were investigated. KMPS-2E (50, 100 and 200 µg/mL) inhibits iNOS, TLR4, phospho-NF-κB–p65 expression, phosphor-IKK, phosphor-IκB-α expression as well as the degradation of IκB-α and the gene expression of inflammatory cytokines (TNF-α, IL-1β, iNOS and IL-6) mediated by the NF-κB signal pathways in macrophages. KMPS-2E also inhibited LPS-induced activation of NF-κB as assayed by electrophorectic mobility shift assay (EMSA) in a dose-dependent manner and it reduced NF-κB DNA binding affinity by 62.1% at 200µg/mL. In rats, KMPS-2E (200 mg/kg) can significantly inhibit carrageenan-induced paw edema as ibuprofen (200 mg/kg) within 3 h after a single oral dose. The results indicate that KMPS-2E is a promising herb-derived drug against acute inflammation

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p
    corecore