15 research outputs found

    The Development of Peptide-Based Tools for the Analysis of Angiogenesis

    Get PDF
    SummaryLimitations to the application of molecularly targeted cancer therapies are the inability to accurately match patient with effective treatment and the absence of a prompt readout of posttreatment response. Noninvasive agents that rapidly report vascular endothelial growth factor (VEGF) levels using positron emission tomography (PET) have the potential to enhance anti-angiogenesis therapies. Using phage display, two distinct classes of peptides were identified that bind to VEGF with nanomolar affinity and high selectivity. Co-crystal structures of these different peptide classes demonstrate that both bind to the receptor-binding region of VEGF. 18F-radiolabelling of these peptides facilitated the acquisition of PET images of tumor VEGF levels in a HM7 xenograph model. The images obtained from one 59-residue probe, 18F-Z-3B, 2 hr postinjection are comparable to those obtained with anti-VEGF antibody B20 72 hr postinjection. Furthermore, VEGF levels in growing SKOV3 tumors were followed using 18F-Z-3B as a PET probe with VEGF levels increasing with tumor size

    Evaluation of a 3-hydroxypyridin-2-one (2,3-HOPO) Based Macrocyclic Chelator for 89 Zr 4+ and Its Use for ImmunoPET Imaging of HER2 Positive Model of Ovarian Carcinoma in Mice

    Get PDF
    Abstract A novel octadentate 3-hydroxypyridin-2-one (2,3-HOPO) based di-macrocyclic ligand was evaluated for chelation of 89 Zr; subsequently, it was used as a bi-functional chelator for preparation of 89 Zr-labeled antibodies. Quantitative chelation of 89 Zr 4+ with the octadentate ligand forming 89 ZrL complex was achieved under mild conditions within 15 minutes. The 89 Zr-complex was stable in vitro in presence of DTPA, but a slow degradation was observed in serum. In vivo, the hydrophilic 89 Zr-complex showed prevalently renal excretion; and an elevated bone uptake of radioactivity suggested a partial release of 89 Zr 4+ from the complex. The 2,3-HOPO based ligand was conjugated to the monoclonal antibodies, HER2-specific trastuzumab and an isotypic anti-gD antibody, using a p-phenylene bis-isothiocyanate linker to yield products with an average loading of less than 2 chelates per antibody. Conjugated antibodies were labeled with 89 Zr under mild conditions providing the PET tracers in 60-69% yield. Despite the limited stability in mouse serum; the PET tracers performed very well in vivo. The PET imaging in mouse model of HER2 positive ovarian carcinoma showed tumor uptake of 89 Zr-trastuzumab (29.2 ± 12.9 %ID/g) indistinguishable (p = 0.488) from the uptake of positive control 89 Zr-DFO-trastuzumab (26.1 ± 3.3 %ID/g). In conclusion, the newly developed 3-hydroxypyridin-2-one based di-macrocyclic chelator provides a viable alternative to DFO-based heterobifunctional ligands for preparation of 89 Zr-labeled monoclonal antibodies for immunoPET studies

    ImmunoPET helps predicting the efficacy of antibody-drug conjugates targeting TENB2 and STEAP1

    Get PDF
    The efficacy of antibody-drug conjugates (ADCs) targeted to solid tumors depends on biological processes that are hard to monitor in vivo. Zr-89-immunoPET of the ADC antibodies could help understand the performance of ADCs in the clinic by confirming the necessary penetration, binding, and internalization. This work studied monomethyl auristatin E (MMAE) ADCs against two targets in metastatic castration-resistant prostate cancer, TENB2 and STEAP1, in four patient-derived tumor models (LuCaP35V, LuCaP70, LuCaP77, LuCaP96.1). Three aspects of ADC biology were measured and compared: efficacy was measured in tumor growth inhibition studies; target expression was measured by immunohistochemistry and flow cytometry; and tumor antibody uptake was measured with In-111-mAbs and gamma counting or with Zr-89-immunoPET. Within each model, the mAb with the highest tumor uptake showed the greatest potency as an ADC. Sensitivity between models varied, with the LuCaP77 model showing weak efficacy despite high target expression and high antibody uptake. Ex vivo analysis confirmed the in vivo results, showing a correlation between expression, uptake and ADC efficacy. We conclude that Zr-89-immunoPET data can demonstrate which ADC candidates achieve the penetration, binding, and internalization necessary for efficacy in tumors sensitive to the toxic payload

    Total-Body PET and Highly Stable Chelators Together Enable Meaningful 89Zr-Antibody PET Studies up to 30 Days After Injection

    No full text
    The use of 89Zr-antibody PET imaging to measure antibody biodistribution and tissue pharmacokinetics is well established, but current PET systems lack the sensitivity needed to study 89Zr-labeled antibodies beyond 2-3 isotope half-lives (7-10 d), after which a poor signal-to-noise ratio is problematic. However, studies across many weeks are desirable to better match antibody circulation half-life in human and nonhuman primates. These studies investigated the technical feasibility of using the primate mini-EXPLORER PET scanner, making use of its high sensitivity and 45-cm axial field of view, for total-body imaging of 89Zr-labeled antibodies in rhesus monkeys up to 30 d after injection. Methods: A humanized monoclonal IgG antibody against the herpes simplex viral protein glycoprotein D (gD) was radiolabeled with 89Zr via 1 of 4 chelator-linker combinations (benzyl isothiocyanate-DFO [DFO-Bz-NCS], where DFO is desferrioxamine B; DFO-squaramide; DFO*-Bz-NCS, where DFO* is desferrioxamine*; and DFO*-squaramide). The pharmacokinetics associated with these 4 chelator-linker combinations were compared in 12 healthy young male rhesus monkeys (∼1-2 y old, ∼3 ± 1 kg). Each animal was initially injected intravenously with unlabeled antibody in a peripheral vessel in the right arm (10 mg/kg, providing therapeutic-level antibody concentrations), immediately followed by approximately 40 MBq of one of the 89Zr-labeled antibodies injected intravenously in a peripheral vessel in the left arm. All animals were imaged 6 times over a period of 30 d, with an initial 60-min dynamic scan on day 0 (day of injection) followed by static scans of 30-45 min on approximately days 3, 7, 14, 21, and 30, with all acquired using a single bed position and images reconstructed using time-of-flight list-mode ordered-subsets expectation maximization. Activity concentrations in various organs were extracted from the PET images using manually defined regions of interest. Results: Excellent image quality was obtained, capturing the initial distribution phase in the whole-body scan; later time points showed residual 89Zr mainly in the liver. Even at 30 d after injection, representing approximately 9 half-lives of 89Zr and with a total residual activity of only 20-40 kBq in the animal, the image quality was sufficient to readily identify activity in the liver, kidneys, and upper and lower limb joints. Significant differences were noted in late time point liver uptake, bone uptake, and whole-body clearance between chelator-linker types, whereas little variation (±10%) was observed within each type. Conclusion: These studies demonstrate the ability to image 89Zr-radiolabeled antibodies up to 30 d after injection while maintaining satisfactory image quality, as provided by the primate mini-EXPLORER with high sensitivity and long axial field of view. Quantification demonstrated potentially important differences in the behavior of the 4 chelators. This finding supports further investigation

    Preclinical Efficacy of an Antibody-Drug Conjugate Targeting Mesothelin Correlates with Quantitative Zr-89-ImmunoPET

    No full text
    Antibody-drug conjugates (ADC) use monoclonal antibodies (mAb) as vehicles to deliver potent cytotoxic drugs selectively to tumor cells expressing the target. Molecular imaging with zirconium-89 (Zr-89)-labeled mAbs recapitulates similar targeting biology and might help predict the efficacy of these ADCs. An anti-mesothelin antibody (AMA, MMOT0530A) was used to make comparisons between its efficacy as an ADC and its tumor uptake as measured by Zr-89 immunoPET imaging. Mesothelin-targeted tumor growth inhibition by monomethyl auristatin E (MMAE), ADC AMA-MMAE (DMOT4039A), was measured in mice bearing xenografts of ovarian cancer OVCAR-3 x 2.1, pancreatic cancers Capan-2, HPAC, AsPC-1, and HPAF-II, or mesothelioma MSTO-211H. Ex vivo analysis of mesothelin expression was performed using immunohistochemistry. AMA-MMAE showed the greatest growth inhibition in OVCAR-3 x 2.1, Capan-2, and HPAC tumors, which showed target-specific tumor uptake of Zr-89-AMA. The less responsive xenografts (AsPC-1, HPAF-II, and MSTO-211H) did not show Zr-89-AMA uptake despite confirmed mesothelin expression. ImmunoPET can demonstrate the necessary delivery, binding, and internalization of an ADC antibody in vivo and this correlates with the efficacy of mesothelin-targeted ADC in tumors vulnerable to the cytotoxic drug delivered. (C) 2016 AACR

    FGF21 mimetic antibody stimulates UCP1-independent brown fat thermogenesis via FGFR1/βKlotho complex in non-adipocytes

    No full text
    Objective: Fibroblast Growth Factor 21 (FGF21) is a potent stimulator of brown fat thermogenesis that improves insulin sensitivity, ameliorates hepatosteatosis, and induces weight loss by engaging the receptor complex comprised of Fibroblast Growth Factor Receptor 1 (FGFR1) and the requisite coreceptor βKlotho. Previously, recombinant antibody proteins that activate the FGFR1/βKlotho complex were proposed to act as an FGF21-mimetic; however, in vivo action of these engineered proteins has not been well studied. Methods: We investigated the mechanism by which anti-FGFR1/βKlotho bispecific antibody (bFKB1) stimulates thermogenesis in UCP1-expressing brown adipocytes using genetically engineered mice. Anti-FGFR1 agonist antibody was also used to achieve brown adipose tissue restricted activation in transgenic mice. Results: Studies with global Ucp1-deficient mice and adipose-specific Fgfr1 deficient mice demonstrated that bFKB1 acts on targets distal to adipocytes and indirectly stimulates brown adipose thermogenesis in a UCP1-independent manner. Using a newly developed transgenic system, we also show that brown adipose tissue restricted activation of a transgenic FGFR1 expressed under the control of Ucp1 promoter does not stimulate energy expenditure. Finally, consistent with its action as a FGF21 mimetic, bFBK1 suppresses intake of saccharin-containing food and alcohol containing water in mice. Conclusions: Collectively, we propose that FGFR1/βKlotho targeted therapy indeed mimics the action of FGF21 in vivo and stimulates UCP1-independent brown fat thermogenesis through receptors outside of adipocytes and likely in the nervous system

    Loss of the Serine/Threonine Kinase Fused Results in Postnatal Growth Defects and Lethality Due to Progressive Hydrocephalus

    No full text
    The Drosophila Fused (Fu) kinase is an integral component of the Hedgehog (Hh) pathway that helps promote Hh-dependent gene transcription. Vertebrate homologues of Fu function in the Hh pathway in vitro, suggesting that Fu is evolutionarily conserved. We have generated fused (stk36) knockout mice to address the in vivo function of the mouse Fu (mFu) homologue. fused knockouts develop normally, being born in Mendelian ratios, but fail to thrive within 2 weeks, displaying profound growth retardation with communicating hydrocephalus and early mortality. The fused gene is expressed highly in ependymal cells and the choroid plexus, tissues involved in the production and circulation of cerebral spinal fluid (CSF), suggesting that loss of mFu disrupts CSF homeostasis. Similarly, fused is highly expressed in the nasal epithelium, where fused knockouts display bilateral suppurative rhinitis. No obvious defects were observed in the development of organs where Hh signaling is required (limbs, face, bones, etc.). Specification of neuronal cell fates by Hh in the neural tube was normal in fused knockouts, and induction of Hh target genes in numerous tissues is not affected by the loss of mFu. Furthermore, stimulation of fused knockout cerebellar granule cells to proliferate with Sonic Hh revealed no defect in Hh signal transmission. These results show that the mFu homologue is not required for Hh signaling during embryonic development but is required for proper postnatal development, possibly by regulating the CSF homeostasis or ciliary function
    corecore