1,399 research outputs found

    Estimation and model selection in generalized additive partial linear models for correlated data with diverging number of covariates

    Full text link
    We propose generalized additive partial linear models for complex data which allow one to capture nonlinear patterns of some covariates, in the presence of linear components. The proposed method improves estimation efficiency and increases statistical power for correlated data through incorporating the correlation information. A unique feature of the proposed method is its capability of handling model selection in cases where it is difficult to specify the likelihood function. We derive the quadratic inference function-based estimators for the linear coefficients and the nonparametric functions when the dimension of covariates diverges, and establish asymptotic normality for the linear coefficient estimators and the rates of convergence for the nonparametric functions estimators for both finite and high-dimensional cases. The proposed method and theoretical development are quite challenging since the numbers of linear covariates and nonlinear components both increase as the sample size increases. We also propose a doubly penalized procedure for variable selection which can simultaneously identify nonzero linear and nonparametric components, and which has an asymptotic oracle property. Extensive Monte Carlo studies have been conducted and show that the proposed procedure works effectively even with moderate sample sizes. A pharmacokinetics study on renal cancer data is illustrated using the proposed method.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1194 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    SECTION INTRO: Life\u27s Intangibles

    Get PDF

    Temperature Dependence Of Brillouin Light Scattering Spectra Of Acoustic Phonons In Silicon

    Get PDF
    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. (C) 2015 AIP Publishing LLC.National Science Foundation (NSF) Thermal Transport Processes Program CBET-1336968PhysicsCenter for Complex Quantum SystemsMaterials Science and EngineeringTexas Materials InstituteMechanical Engineerin

    Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane

    Get PDF
    The rejection of cyclophosphamide (CP) by nanofiltration (NF) and reverse osmosis (RO) membranes from ultrapure (Milli-Q) water and membrane bioreactor (MBR) effluent was investigated. Lyophilization–extraction and detection methods were first developed for CP analysis in different water matrices. Experimental results showed that the RO membrane provided excellent rejection (>90%) under all operating conditions. Conversely, efficiency of CP rejection by NF membrane was poor: in the range of 20–40% from Milli-Q water and around 60% from MBR effluent. Trans-membrane pressure, initial CP concentration and ionic strength of the feed solution had almost no effect on CP retention by NF. On the other hand, the water matrix proved to have a great influence: CP rejection rate by NF was clearly enhanced when MBR effluent was used as the background solution. Membrane fouling and interactions between the CP and water matrix appeared to contribute to the higher rejection of CP

    Cyclophosphamide removal by nanofiltration and reverse osmosis membranes - effect of water matrix properties

    Get PDF
    The rejection of cyclophosphamide (CP) by nanofiltration (NF) and reverse osmosis (RO) membranes from ultrapure (Milli-Q) water and membrane bioreactor (MBR) effluent was investigated. Experimental results showed that the RO membrane provided excellent rejection (>90%) under all operating conditions. Conversely, efficiency of CP rejection by NF membrane was poor: in the range of 20-40% from Milli-Q water and around 60% from MBR effluent. Trans-membrane pressure, initial CP concentration and ionic strength of the feed solution had almost no effect on CP retention by NF. On the other hand, the water matrix proved to have a great influence: CP rejection rate by NF was clearly enhanced when MBR effluent was used as the background solution. Membrane fouling and interactions between the CP molecule and water matrix appeared to contribute to the higher rejection of CP

    High-mass Starless Clumps in the inner Galactic Plane: the Sample and Dust Properties

    Get PDF
    We report a sample of 463 high-mass starless clump (HMSC) candidates within 60deg<l<60deg-60\deg<l<60\deg and 1deg<b<1deg-1\deg<b<1\deg. This sample has been singled out from 10861 ATLASGAL clumps. All of these sources are not associated with any known star-forming activities collected in SIMBAD and young stellar objects identified using color-based criteria. We also make sure that the HMSC candidates have neither point sources at 24 and 70 \micron~nor strong extended emission at 24 μ\mum. Most of the identified HMSCs are infrared (24\le24 μ\mum) dark and some are even dark at 70 μ\mum. Their distribution shows crowding in Galactic spiral arms and toward the Galactic center and some well-known star-forming complexes. Many HMSCs are associated with large-scale filaments. Some basic parameters were attained from column density and dust temperature maps constructed via fitting far-infrared and submillimeter continuum data to modified blackbodies. The HMSC candidates have sizes, masses, and densities similar to clumps associated with Class II methanol masers and HII regions, suggesting they will evolve into star-forming clumps. More than 90% of the HMSC candidates have densities above some proposed thresholds for forming high-mass stars. With dust temperatures and luminosity-to-mass ratios significantly lower than that for star-forming sources, the HMSC candidates are externally heated and genuinely at very early stages of high-mass star formation. Twenty sources with equivalent radius req<0.15r_\mathrm{eq}<0.15 pc and mass surface density Σ>0.08\Sigma>0.08 g cm2^{-2} could be possible high-mass starless cores. Further investigations toward these HMSCs would undoubtedly shed light on comprehensively understanding the birth of high-mass stars.Comment: 16 pages, 15 figures, and 5 tables. Accepted for publication in ApJS. FITS images for the far-IR to sub-mm data, H2 column density and dust temperature maps of all the HMSC candidates are available at https: //yuanjinghua.github.io/hmscs.html. Codes used for this work are publicly available from https://github.com/yuanjinghua/HMSCs_ca
    corecore