20 research outputs found

    Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver.

    Get PDF
    International audienceNumerous investigations have shown that mitochondrial dysfunction is a major mechanism of drug-induced liver injury, which involves the parent drug or a reactive metabolite generated through cytochromes P450. Depending of their nature and their severity, the mitochondrial alterations are able to induce mild to fulminant hepatic cytolysis and steatosis (lipid accumulation), which can have different clinical and pathological features. Microvesicular steatosis, a potentially severe liver lesion usually associated with liver failure and profound hypoglycemia, is due to a major inhibition of mitochondrial fatty acid oxidation (FAO). Macrovacuolar steatosis, a relatively benign liver lesion in the short term, can be induced not only by a moderate reduction of mitochondrial FAO but also by an increased hepatic de novo lipid synthesis and a decreased secretion of VLDL-associated triglycerides. Moreover, recent investigations suggest that some drugs could favor lipid deposition in the liver through primary alterations of white adipose tissue (WAT) homeostasis. If the treatment is not interrupted, steatosis can evolve toward steatohepatitis, which is characterized not only by lipid accumulation but also by necroinflammation and fibrosis. Although the mechanisms involved in this aggravation are not fully characterized, it appears that overproduction of reactive oxygen species by the damaged mitochondria could play a salient role. Numerous factors could favor drug-induced mitochondrial and metabolic toxicity, such as the structure of the parent molecule, genetic predispositions (in particular those involving mitochondrial enzymes), alcohol intoxication, hepatitis virus C infection, and obesity. In obese and diabetic patients, some drugs may induce acute liver injury more frequently while others may worsen the pre-existent steatosis (or steatohepatitis)

    Drug-Induced Inhibition of Mitochondrial Fatty Acid Oxidation and Steatosis

    No full text
    Mitochondrial Dysfunction and Diseases (H Jaeschke, Section Editor)International audienceDrug-induced inhibition of mitochondrial fatty acid β-oxidation (mtFAO) is a key mechanism whereby drugs can induce steatosis. The type and severity of this liver lesion is dependent on the residual mtFAO flux. Indeed, a severe inhibition of mtFAO leads to microvesicular steatosis, hypoglycemia and liver failure, which can be favored by genetic predispositions. In contrast, moderate impairment of mtFAO can cause macrovacuolar steatosis, which is by itself a benign lesion. In the long-term, however, macrovacuolar steatosis can progress with some drugs to steatohepatitis. Interestingly, drugs that are more likely to cause steatohepatitis are those impairing the mitochondrial respiratory chain (MRC) activity. Indeed, MRC impairment favors not only hepatic fat accretion but also oxidative stress and lipid peroxidation. Drugs inhibiting mtFAO could be more toxic in obese patients with preexisting nonalcoholic fatty liver disease (NAFLD) since higher mtFAO is a key metabolic adaptation to curb fat accretion during NAFLD

    Use of Human Cancer Cell Lines Mitochondria to Explore the Mechanisms of BH3 Peptides and ABT-737-Induced Mitochondrial Membrane Permeabilization

    Get PDF
    Current limitations of chemotherapy include toxicity on healthy tissues and multidrug resistance of malignant cells. A number of recent anti-cancer strategies aim at targeting the mitochondrial apoptotic machinery to induce tumor cell death. In this study, we set up protocols to purify functional mitochondria from various human cell lines to analyze the effect of peptidic and xenobiotic compounds described to harbour either Bcl-2 inhibition properties or toxic effects related to mitochondria. Mitochondrial inner and outer membrane permeabilization were systematically investigated in cancer cell mitochondria versus non-cancerous mitochondria. The truncated (t-) Bid protein, synthetic BH3 peptides from Bim and Bak, and the small molecule ABT-737 induced a tumor-specific and OMP-restricted mitochondrio-toxicity, while compounds like HA-14.1, YC-137, Chelerythrine, Gossypol, TW-37 or EM20-25 did not. We found that ABT-737 can induce the Bax-dependent release of apoptotic proteins (cytochrome c, Smac/Diablo and Omi/HtrA2 but not AIF) from various but not all cancer cell mitochondria. Furthermore, ABT-737 addition to isolated cancer cell mitochondria induced oligomerization of Bax and/or Bak monomers already inserted in the mitochondrial membrane. Finally immunoprecipatations indicated that ABT-737 induces Bax, Bak and Bim desequestration from Bcl-2 and Bcl-xL but not from Mcl-1L. This study investigates for the first time the mechanism of action of ABT-737 as a single agent on isolated cancer cell mitochondria. Hence, this method based on MOMP (mitochondrial outer membrane permeabilization) is an interesting screening tool, tailored for identifying Bcl-2 antagonists with selective toxicity profile against cancer cell mitochondria but devoid of toxicity against healthy mitochondria

    The Mitochondrion-lysosome Axis in Adaptive and Innate Immunity: Effect of Lupus Regulator Peptide P140 on Mitochondria Autophagy and NETosis

    Get PDF
    Mitochondria deserve special attention as sensors of cellular energy homeostasis and metabolic state. Moreover, mitochondria integrate intra- and extra-cellular signals to determine appropriate cellular responses that range from proliferation to cell death. In autoimmunity, as in other inflammatory chronic disorders, the metabolism of immune cells may be extensively remodeled, perturbing sensitive tolerogenic mechanisms. Here, we examine the distribution and effects of the therapeutic 21-mer peptide called P140, which shows remarkable efficacy in modulating immune responses in inflammatory settings. We measured P140 and control peptide effects on isolated mitochondria, the distribution of peptides in live cells, and their influence on the levels of key autophagy regulators. Our data indicate that while P140 targets macro- and chaperone-mediated autophagy processes, it has little effect, if any, on mitochondrial autophagy. Remarkably, however, it suppresses NET release from neutrophils exposed to immobilized NET-anti-DNA IgG complexes. Together, our results suggest that in the mitochondrion-lysosome axis, a likely driver of NETosis and inflammation, the P140 peptide does not operate by affecting mitochondria directly

    Prediction of Liver Injury Induced by Chemicals in Human with a Multiparametric Assay on Isolated Mouse Liver Mitochondria.

    Get PDF
    International audienceDrug-induced liver injury (DILI) in humans is difficult to predict using classical in vitro cytotoxicity screening and regulatory animal studies. This explains why numerous compounds are stopped during clinical trials or withdrawn from the market due to hepatotoxicity. Thus, it is important to improve early prediction of DILI in human. In the present study, we hypothesized that this goal could be achieved by investigating drug-induced mitochondrial dysfunction as this toxic effect is a major mechanism of DILI. To this end, we developed a high-throughput screening platform using isolated mouse liver mitochondria. Our broad spectrum multiparametric assay was designed to detect the global mitochondrial membrane permeabilization (swelling), inner membrane permeabilization (transmembrane potential), outer membrane permeabilization (cytochrome c release) and alteration of mitochondrial respiration driven by succinate or malate/glutamate. A pool of 124 chemicals (mainly drugs) was selected, including 87 with documented DILI and 37 without reported clinical hepatotoxicity. Our screening assay revealed an excellent sensitivity for clinical outcome of DILI (94 or 92% depending on cut-off) and a high positive predictive value (89 or 82%). A highly significant relationship between drug-induced mitochondrial toxicity and DILI occurrence in patients was calculated (P<0.001). Moreover, this multiparametric assay allowed identifying several compounds for which mitochondrial toxicity had never been described before and even helped to clarify mechanisms with some drugs already known to be mitochondriotoxic. Investigation of drug-induced loss of mitochondrial integrity and function with this multiparametric assay should be considered for integration into basic screening processes at early stage to select drug candidates with lower risk of DILI in human. This assay is also a valuable tool for assessing the mitochondrial toxicity profile and investigating the mechanism of action of new compounds and marketed compounds

    Drug-induced impairment of mitochondrial fatty acid oxidation and steatosis: assessment of causal relationship with 45 pharmaceuticals

    No full text
    International audienceDrug-induced liver injury (DILI) represents a major issue for pharmaceutical companies, being a potential cause of black-box warnings on marketed pharmaceuticals, or drug withdrawal from the market. Lipid accumulation in the liver also referred to as steatosis, may be secondary to impaired mitochondrial fatty acid oxidation (mtFAO). However, an overall causal relationship between drug-induced mtFAO inhibition and the occurrence of steatosis in patients has not yet been established with a high number of pharmaceuticals. Hence, 32 steatogenic and 13 non-steatogenic drugs were tested for their ability to inhibit mtFAO in isolated mouse liver mitochondria. To this end, mitochondrial respiration was measured with palmitoyl-L-carnitine, palmitoyl-CoA + L-carnitine, or octanoyl-L-carnitine. This mtFAO tri-parametric assay was able to predict the occurrence of steatosis in patients with a sensitivity and positive predictive value above 88%. To get further information regarding the mechanism of drug-induced mtFAO impairment, mitochondrial respiration was also measured with malate/glutamate or succinate. Drugs such as diclofenac, methotrexate and troglitazone could inhibit mtFAO secondary to an impairment of the mitochondrial respiratory chain, while dexamethasone, olanzapine and zidovudine appeared to impair mtFAO directly. Mitochondrial swelling, transmembrane potential and production of reactive oxygen species were also assessed for all compounds. Only the steatogenic drugs amiodarone, ketoconazole, lovastatin and toremifene altered all these 3 mitochondrial parameters. In conclusion, our tri-parametric mtFAO assay could be useful in predicting the occurrence of steatosis in patients. The combination of this assay with other mitochondrial parameters could also help to better understand the mechanism of drug-induced mtFAO inhibition

    A Fast, Simple, and Affordable Technique to Measure Oxygen Consumption in Living Zebrafish Embryos

    No full text
    International audienceIn all animal species, oxygen consumption is a key process that is partially impaired in a large number of pathological situations and thus provides informative details on the physiopathology of the disease. In this study, we describe a simple and affordable method to precisely measure oxygen consumption in living zebrafish larvae using a spectrofluorometer and the MitoXpress Xtra Oxygen Consumption Assay. In addition, we used zebrafish larvae treated with mitochondrial respiratory chain inhibitors, antimycin A or rotenone, to verify that our method enables precise and reliable measurements of oxygen consumption
    corecore