53 research outputs found

    Role for the fission yeast RecQ helicase in DNA repair in G2.

    Get PDF
    Members of the RecQ helicase subfamily are mutated in several human genomic instability syndromes, such as Bloom, Werner, and Rothmund-Thomson syndromes. We show that Rqh1, the single Schizosaccharomyces pombe homologue, is a 3'-to-5' helicase and exists with Top3 in a high-molecular-weight complex. top3 deletion is inviable, and this is suppressed by concomitant loss of rqh1 helicase activity or loss of recombination functions. This is consistent with RecQ helicases in other systems. By using epistasis analysis of the UV radiation sensitivity and by analyzing the kinetics of Rhp51 (Rad51 homologue), Rqh1, and Top3 focus formation in response to UV in synchronized cells, we identify the first evidence of a function for Rqh1 and Top3 in the repair of UV-induced DNA damage in G(2). Our data provide evidence that Rqh1 functions after Rad51 focus formation during DNA repair. We also identify a function for Rqh1 upstream of recombination in an Rhp18-dependent (Rad18 homologue) pathway. The model that these data allow us to propose helps to reconcile different interpretations of RecQ family helicase function that have arisen between work based on the S. pombe system and models based on studies of Saccharomyces cerevisiae SGS1 suggesting that RecQ helicases act before Rad51

    Natural Products from Leaves of the Ancient Iranian Medicinal Plant Echium amoenum Fisch. & C. A. Mey.

    Get PDF
    For several millennia, leaves of Echium amoenum Fisch. & C. A. Mey., an important Iranian medicinal plant with nutritional value as nutraceutical, have been used as tea for the treatment of several conditions, including inflammation. The nutritional value of intake of E. amoenum tea has mainly been correlated to its rich content of mainly water-soluble antioxidants. Although the entire plant is utilized, only natural products of the flowers have previously been thoroughly investigated. The rare natural products bis(3-(3,4-dihydroxyphenyl)-1-methoxy-1-oxopropan-2-yl)-1-(3,4-dihydroxyphenyl)-6,7-dihydroxy-1,2-dihydronaphthalene-2,3-dicarboxylate, 4-Oxy-(E)-caffeoyl-2,3-dihydroxybutanoic acid methyl ester and 4-Oxy-(Z)-caffeoyl-2,3-dihydroxybutanoic acid methyl ester, in addition to the widely distributed compounds rosmarinic acid methyl ester and (E)-caffeic acid, were purified and characterized from leaves of Echium amoenum. The structures were determined by a combination of several 2D NMR spectroscopic techniques, circular dichroism spectroscopy and high-resolution mass spectrometry. The fact that bis(3-(3,4-dihydroxyphenyl)-1-methoxy-1-oxopropan-2-yl)-1-(3,4-dihydroxyphenyl)-6,7-dihydroxy-1,2-dihydronaphthalene-2,3-dicarboxylate belongs to a rare group of natural products which have previously been patented for their significant anti-inflammatory activity may rationalize the traditional treatment of inflammations with E. amoenum.publishedVersio

    MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context

    Get PDF
    To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein–DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein–DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling

    Does size really matter? A multisite study assessing the latent structure of the proposed ICD-11 and DSM-5 diagnostic criteria for PTSD

    Get PDF
    Background: Researchers and clinicians within the field of trauma have to choose between different diagnostic descriptions of posttraumatic stress disorder (PTSD) in the DSM-5 and the proposed ICD-11. Several studies support different competing models of the PTSD structure according to both diagnostic systems; however, findings show that the choice of diagnostic systems can affect the estimated prevalence rates. Objectives: The present study aimed to investigate the potential impact of using a large (i.e. the DSM-5) compared to a small (i.e. the ICD-11) diagnostic description of PTSD. In other words, does the size of PTSD really matter? Methods: The aim was investigated by examining differences in diagnostic rates between the two diagnostic systems and independently examining the model fit of the competing DSM-5 and ICD-11 models of PTSD across three trauma samples: university students (N = 4213), chronic pain patients (N = 573), and military personnel (N = 118). Results: Diagnostic rates of PTSD were significantly lower according to the proposed ICD-11 criteria in the university sample, but no significant differences were found for chronic pain patients and military personnel. The proposed ICD-11 three-factor model provided the best fit of the tested ICD-11 models across all samples, whereas the DSM-5 seven-factor Hybrid model provided the best fit in the university and pain samples, and the DSM-5 six-factor Anhedonia model provided the best fit in the military sample of the tested DSM-5 models. Conclusions: The advantages and disadvantages of using a broad or narrow set of symptoms for PTSD can be debated, however, this study demonstrated that choice of diagnostic system may influence the estimated PTSD rates both qualitatively and quantitatively. In the current described diagnostic criteria only the ICD-11 model can reflect the configuration of symptoms satisfactorily. Thus, size does matter when assessing PTSD

    Assembly and structural analysis of a covalently closed nano-scale DNA cage

    Get PDF
    The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson–Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise are necessary before complex DNA structures can be routinely designed for the use in basal science and/or biotechnology. Here we present the design, construction and structural analysis of a covalently closed and stable 3D DNA structure with the connectivity of an octahedron, as defined by the double-stranded DNA helices that assembles from eight oligonucleotides with a yield of ∼30%. As demonstrated by Small Angle X-ray Scattering and cryo-Transmission Electron Microscopy analyses the eight-stranded DNA structure has a central cavity larger than the apertures in the surrounding DNA lattice and can be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures

    RecQ helicases and topoisomerase III in cancer and aging

    No full text
    RecQ helicases have in recent years attracted increasing attention due to the important roles they play in maintaining genomic integrity, which is essential for the life of a cell and the survival of a species. Humans with mutations in RecQ homologues are cancer prone and suffer from premature aging. A great effort has therefore been made to understand the molecular mechanisms and the biological pathways, in which RecQ helicases are involved. It has become clear that these enzymes work in close concert with DNA topoisomerase III, and studies in both yeast and mammalian systems point to a role of the proteins in processes involving homologous recombination. In this review we discuss the genetic and biochemical evidence for possible functions of RecQ helicases and DNA topoisomerase III in multiple cellular processes such as DNA recombination, DNA replication, and cell cycle checkpoint control
    corecore