19 research outputs found

    The internal audit dilemma: The impact of executive directors versus audit committees on internal auditing work

    Get PDF
    Purpose The purpose of this study is to analyze how internal audit function (IAF) activities differ, depending on the impact of executive boards (EBs) and audit committees (ACs). Design/methodology/approach This study is based on data collected from the Common Body of Knowledge (CBOK) study conducted by the Institute of Internal Auditors Research Foundation in 2010. Using 524 responses from US Chief audit executives the authors examine the direct and interaction effects of ACs and EBs on the probability to perform specific activities with a logistic regression model. Findings This manuscript shows that ACs and EBs have different direct and interaction effects on the portfolio of activities performed by the IAF. Furthermore, a varying prevalence among activities was identified, which pinpoints to the maturity of IAFs. All findings contribute to the prior and recent discussion about the position of IAFs between the stakeholders’ AC and EB. Research limitations/implications When the CBOK study was designed by the Institute of Internal Auditors, the investigators did not have the research questions in mind. The authors are therefore limited to those variables that have been collected as part of a larger questionnaire. Nevertheless, the new approach tries to open a new research direction, analyzing different activities performed by IAFs. Practical implications The identified portfolio of IAF activities can help practitioners to double-check their own work and to evaluate the impact of the EB and the AC on their activities. Originality/value This study provides the first empirical evidence of the influence of ACs and EBs on IAF activities

    Hepatocyte integrity depends on c-Jun-controlled proliferation in Schistosoma mansoni infected mice

    No full text
    Abstract Schistosomiasis is a parasitic disease affecting more than 250 million people worldwide. The transcription factor c-Jun, which is induced in S. mansoni infection-associated liver disease, can promote hepatocyte survival but can also trigger hepatocellular carcinogenesis. We aimed to analyze the hepatic role of c-Jun following S. mansoni infection. We adopted a hepatocyte-specific c-Jun knockout mouse model (Alb-Cre/c-Jun loxP) and analyzed liver tissue and serum samples by quantitative real-time PCR array, western blotting, immunohistochemistry, hydroxyproline quantification, and functional analyses. Hepatocyte-specific c-Jun knockout (c-JunΔli) was confirmed by immunohistochemistry and western blotting. Infection with S. mansoni induced elevated aminotransferase-serum levels in c-JunΔli mice. Of note, hepatic Cyclin D1 expression was induced in infected c-Junf/f control mice but to a lower extent in c-JunΔli mice. S. mansoni soluble egg antigen-induced proliferation in a human hepatoma cell line was diminished by inhibition of c-Jun signaling. Markers for apoptosis, oxidative stress, ER stress, inflammation, autophagy, DNA-damage, and fibrosis were not altered in S. mansoni infected c-JunΔli mice compared to infected c-Junf/f controls. Enhanced liver damage in c-JunΔli mice suggested a protective role of c-Jun. A reduced Cyclin D1 expression and reduced hepatic regeneration could be the reason. In addition, it seems likely that the trends in pathological changes in c-JunΔli mice cumulatively led to a loss of the protective potential being responsible for the increased hepatocyte damage and loss of regenerative ability

    Response of submerged macrophyte communities to external and internal restoration measures in north temperate shallow lakes

    Get PDF
    Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallowareas, germinate early in spring, have energy-rich vegetative propagules facilitating rapid initial growth and that can complete their life cycle by early summer. Later in the growing season these plants are, according to our simulations, outcompeted by periphyton, leading to late-summer phytoplankton blooms. Internal lake restoration measures often coincide with a rapid but transient colonization by hornworts, waterweeds or charophytes. Stable clear-water conditions and a diverse macrophyte flora only occurred decades after external nutrient load reduction or when measures were combined

    Miscellaneous Standard Methods For Apis Mellifera Research

    Get PDF
    A variety of methods are used in honey bee research and differ depending on the level at which the research is conducted. On an individual level, the handling of individual honey bees, including the queen, larvae and pupae are required. There are different methods for the immobilising, killing and storing as well as determining individual weight of bees. The precise timing of developmental stages is also an important aspect of sampling individuals for experiments. In order to investigate and manipulate functional processes in honey bees, e. g. memory formation and retrieval and gene expression, microinjection is often used. A method that is used by both researchers and beekeepers is the marking of queens that serves not only to help to locate her during her life, but also enables the dating of queens. Creating multiple queen colonies allows the beekeeper to maintain spare queens, increase brood production or ask questions related to reproduction. On colony level, very useful techniques are the measurement of intra hive mortality using dead bee traps, weighing of full hives, collecting pollen and nectar, and digital monitoring of brood development via location recognition. At the population level, estimation of population density is essential to evaluate the health status and using beelines help to locate wild colonies. These methods, described in this paper, are especially valuable when investigating the effects of pesticide applications, environmental pollution and diseases on colony survival.Wo
    corecore