78 research outputs found

    Stream restoration and ecosystem functioning in lowland streams

    Get PDF
    Restoration has been increasingly applied over the last decades as a way to improve the ecological conditions in stream ecosystems, but documentation of the impact of restoration on ecosystem functions is sparse. Here, we applied a space-for-time approach to explore effects of stream restoration on metabolism and organic matter decomposition in lowland agricultural streams. We included stream reaches that were restored >10 years ago and compared ecosystem functioning in these streams with those in channelized and naturally meandering stream reaches from the same geographical region. Specifically, we tested the following hypotheses: 1) rates of stream metabolism (gross primary production, GPP, and ecosystem respiration, ER) and organic matter decomposition in restored reaches resemble rates in naturally meandering reaches more than rates in channelized stream reaches and 2) higher resemblance in ecosystem metabolism and organic matter decomposition between restored reaches and meandering reaches can be attributed to the improved physical habitat conditions in the restored stream reaches. Overall, we did not find that stream metabolism or organic matter decomposition differed among restored, channelized and naturally meandering stream reaches even though habitat conditions differed among the three stream types. Instead, we found a large variation in ecosystem function characteristics across all sites. When analyzing all stream types combined, we found that GPP increased with increasing plant coverage and that ER increased with increasing stream size and with the coverage of coarse substratum on the stream bottom. Organic matter decomposition, on the other hand, only slightly increased with the number of plant species and declined with increasing concentrations of nutrients. Overall, our findings suggest that physical habitat improvements in restored stream reaches can affect ecosystem functions, but also that the restoration outcome is context-dependent since many of the physical characteristics playing a role for the measured functions were only to some extent affected by the restoration and/or clouded by interference with factors operating at a larger-scale.publishedVersio

    Epiphyton in Agricultural Streams: Structural Control and Comparison to Epilithon

    Get PDF
    Stream biofilms play an important role in the structure, functioning, and integrity of agricultural streams. In many lowland streams, macrophyte vegetation is abundant and functions as an important substrate for biofilm (epiphyton) in addition to the gravel and stone substrate for epilithon on the stream bed. We expect that reach-scale habitat conditions in streams (e.g., nutrient availability, hydraulic conditions) affect the epiphyton and epilithon biomass and composition, and that this effect will be substrate-specific (macrophytes and stones). The objectives of our study were (i) to describe concurrent changes in epiphyton and epilithon biomass and composition over a year in agricultural streams, and (ii) to determine the substrate specific reach-scale habitat drivers for the epiphyton and epilithon structure. We monitored epiphyton and epilithon biofilm biomass and composition at three-week intervals and reach-scale environmental conditions daily during a year for two agricultural steams. The results showed that epiphyton and epilithon communities differed in biomass, having high substrate specific biomass in epilithon compared to epiphyton. Epiphyton was mainly composed of diatom and green algae, while cyanobacteria were more important in epilithon, and the diatom species composition varied between the two biofilm types. Epiphyton structural properties were less influenced by reach-scale hydrology and nutrient availability compared to epilithon. The overall explanatory power of the measured environmental variables was low, probably due to micro-scale habitat effects and interactive processes within stream biofilms. Knowledge of biofilm control in agricultural streams is important in order to improve management strategies, and future studies should improve the understanding of micro-scale habitat conditions, interactive relationships within biofilms and between the biofilm and the substrates

    Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems

    Get PDF
    Climate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses (that is, additive, antagonistic and synergistic effects). We know little about the spatial scales relevant for the outcomes of such interactions and little about effect sizes. These knowledge gaps need to be filled to underpin future land management decisions or climate mitigation interventions for protecting and restoring freshwater ecosystems. This study combines data across scales from 33 mesocosm experiments with those from 14 river basins and 22 cross-basin studies in Europe, producing 174 combinations of paired-stressor effects on a biological response variable. Generalized linear models showed that only one of the two stressors had a significant effect in 39% of the analysed cases, 28% of the paired-stressor combinations resulted in additive effects and 33% resulted in interactive (antagonistic, synergistic, opposing or reversal) effects. For lakes, the frequencies of additive and interactive effects were similar for all spatial scales addressed, while for rivers these frequencies increased with scale. Nutrient enrichment was the overriding stressor for lakes, with effects generally exceeding those of secondary stressors. For rivers, the effects of nutrient enrichment were dependent on the specific stressor combination and biological response variable. These results vindicate the traditional focus of lake restoration and management on nutrient stress, while highlighting that river management requires more bespoke management solutions.Additional co-authors: Tuba Bucak, Anthonie D. Buijse, Ana Cristina Cardoso, Raoul-Marie Couture, Fabien Cremona, Dick de Zwart, Christian K. Feld, M. Teresa Ferreira, Heidrun Feuchtmayr, Mark O. Gessner, Alexander Gieswein, Lidija Globevnik, Daniel Graeber, Wolfram Graf, Cayetano Gutiérrez-Cánovas, Jenica Hanganu, Uğur Işkın, Marko Järvinen, Erik Jeppesen, Niina Kotamäki, Marijn Kuijper, Jan U. Lemm, Shenglan Lu, Anne Lyche Solheim, Ute Mischke, S. Jannicke Moe, Peeter Nõges, Tiina Nõges, Steve J. Ormerod, Yiannis Panagopoulos, Leo Posthuma, Sarai Pouso, Christel Prudhomme, Katri Rankinen, Jes J. Rasmussen, Jessica Richardson, Alban Sagouis, José Maria Santos, Ralf B. Schäfer, Rafaela Schinegger, Stefan Schmutz, Susanne C. Schneider, Lisa Schülting, Pedro Segurado, Kostas Stefanidis, Bernd Sures, Stephen J. Thackeray, Jarno Turunen, María C. Uyarra, Markus Venohr, Peter Carsten von der Ohe & Daniel Herin
    corecore