51 research outputs found

    Impact of Dose Adaptations Following Voriconazole Therapeutic Drug Monitoring in Pediatric Patients

    Get PDF
    This manuscript was derived from chapter 9 of the PhD thesis by Vincent Lempers done at Radboudumc, which can be found at: https://repository.ubn.ru.nl/bitstream/handle/2066/157075/157075.pdf?sequence=1 AW is supported by the Wellcome Trust Strategic Award (grant 097377), and the MRC Centre for Medical Mycology (grant MR/N006364/1) at the University of Aberdeen. Funding: this study was funded by the Department of Pharmacy RadboudumcPeer reviewedPostprin

    Prognostic Factors for Wilms Tumor Recurrence: A Review of the Literature

    Get PDF
    In high-income countries, the overall survival of children with Wilms tumors (WT) is ~90%. However, overall, 15% of patients experience tumor recurrence. The adverse prognostic factors currently used for risk stratification (advanced stage, high risk histology, and combined loss of heterozygosity at 1p and 16q in chemotherapy-naïve WTs) are present in only one third of these cases, and the significance of these factors is prone to change with advancing knowledge and improved treatment regimens. Therefore, we present a comprehensive, updated overview of the published prognostic variables for WT recurrence, ranging from patient-, tumor- and treatment-related characteristics to geographic and socioeconomic factors. Improved first-line treatment regimens based on clinicopathological characteristics and advancing knowledge on copy number variations unveil the importance of further investigating the significance of biological markers for WT recurrence in international collaborations

    A Biomarker-Based Diagnostic Model for Cardiac Dysfunction in Childhood Cancer Survivors

    Get PDF
    Background: Childhood cancer survivors at risk for heart failure undergo lifelong echocardiographic surveillance. Previous studies reported the limited diagnostic accuracy of N-terminal pro–B-type natriuretic peptide (NT-proBNP) and high-sensitivity cardiac troponin T (hs-cTnT) in detecting left ventricular (LV) dysfunction. However, potential enhanced diagnostic accuracy through the combination of biomarkers and clinical characteristics has been suggested. Objectives: The aim of this study was to develop and internally validate a diagnostic model that combines cardiac biomarkers with clinical characteristics for effectively ruling in or ruling out LV dysfunction in childhood cancer survivors. Methods: A multicenter cross-sectional study included 1,334 survivors (median age 34.2 years) and 278 siblings (median age 36.8 years). Logistic regression models were developed and validated through bootstrapping, combining biomarkers with clinical characteristics. Results: Abnormal NT-proBNP levels were observed in 22.1% of survivors compared with 5.4% of siblings, whereas hs-cTnT levels exceeding 10 ng/L were uncommon in both survivors (5.9%) and siblings (5.0%). The diagnostic models demonstrated improvement upon the addition of NT-proBNP and hs-cTnT to clinical characteristics, resulting in an increased C statistic from 0.69 to 0.73 for LV ejection fraction (LVEF) &lt;50% and a more accurate prediction of more severe LV dysfunction, with the C statistic increasing from 0.80 to 0.86 for LVEF &lt;45%. For LVEF &lt;50% (prevalence 10.9%), 16.9% of survivors could be effectively ruled out with high sensitivity (95.4%; 95% CI: 90.4%-99.3%) and negative predictive value (97.5%; 95% CI: 94.6%-99.7%). Similarly, for LVEF &lt;45% (prevalence 3.4%), 53.0% of survivors could be ruled out with moderate to high sensitivity (91.1%; 95% CI: 79.2%-100%) and high negative predictive value (99.4%; 95% CI: 98.7%-100%). Conclusions: The biomarker-based diagnostic model proves effective in ruling out LV dysfunction, offering the potential to minimize unnecessary surveillance echocardiography in childhood cancer survivors. External validation is essential to confirm these findings. (Early Detection of Cardiac Dysfunction in Childhood Cancer Survivors; A DCOG LATER Study; https://onderzoekmetmensen.nl/nl/trial/23641)</p

    A Biomarker-Based Diagnostic Model for Cardiac Dysfunction in Childhood Cancer Survivors

    Get PDF
    Background: Childhood cancer survivors at risk for heart failure undergo lifelong echocardiographic surveillance. Previous studies reported the limited diagnostic accuracy of N-terminal pro–B-type natriuretic peptide (NT-proBNP) and high-sensitivity cardiac troponin T (hs-cTnT) in detecting left ventricular (LV) dysfunction. However, potential enhanced diagnostic accuracy through the combination of biomarkers and clinical characteristics has been suggested. Objectives: The aim of this study was to develop and internally validate a diagnostic model that combines cardiac biomarkers with clinical characteristics for effectively ruling in or ruling out LV dysfunction in childhood cancer survivors. Methods: A multicenter cross-sectional study included 1,334 survivors (median age 34.2 years) and 278 siblings (median age 36.8 years). Logistic regression models were developed and validated through bootstrapping, combining biomarkers with clinical characteristics. Results: Abnormal NT-proBNP levels were observed in 22.1% of survivors compared with 5.4% of siblings, whereas hs-cTnT levels exceeding 10 ng/L were uncommon in both survivors (5.9%) and siblings (5.0%). The diagnostic models demonstrated improvement upon the addition of NT-proBNP and hs-cTnT to clinical characteristics, resulting in an increased C statistic from 0.69 to 0.73 for LV ejection fraction (LVEF) &lt;50% and a more accurate prediction of more severe LV dysfunction, with the C statistic increasing from 0.80 to 0.86 for LVEF &lt;45%. For LVEF &lt;50% (prevalence 10.9%), 16.9% of survivors could be effectively ruled out with high sensitivity (95.4%; 95% CI: 90.4%-99.3%) and negative predictive value (97.5%; 95% CI: 94.6%-99.7%). Similarly, for LVEF &lt;45% (prevalence 3.4%), 53.0% of survivors could be ruled out with moderate to high sensitivity (91.1%; 95% CI: 79.2%-100%) and high negative predictive value (99.4%; 95% CI: 98.7%-100%). Conclusions: The biomarker-based diagnostic model proves effective in ruling out LV dysfunction, offering the potential to minimize unnecessary surveillance echocardiography in childhood cancer survivors. External validation is essential to confirm these findings. (Early Detection of Cardiac Dysfunction in Childhood Cancer Survivors; A DCOG LATER Study; https://onderzoekmetmensen.nl/nl/trial/23641)</p

    Presence and utility of electrocardiographic abnormalities in long-term childhood cancer survivors

    Get PDF
    Background: We assessed the prevalence and diagnostic value of ECG abnormalities for cardiomyopathy surveillance in childhood cancer survivors. Methods: In this cross-sectional study, 1381 survivors (≥5 years) from the Dutch Childhood Cancer Survivor Study part 2 and 272 siblings underwent a long-term follow-up ECG and echocardiography. We compared ECG abnormality prevalences using the Minnesota Code between survivors and siblings, and within biplane left ventricular ejection fraction (LVEF) categories. Among 880 survivors who received anthracycline, mitoxantrone or heart radiotherapy, logistic regression models using least absolute shrinkage and selection operator identified ECG abnormalities associated with three abnormal LVEF categories (&lt;52% in male/&lt;54% in female, &lt;50% and &lt;45%). We assessed the overall contribution of these ECG abnormalities to clinical regression models predicting abnormal LVEF, assuming an absence of systolic dysfunction with a &lt;1% threshold probability. Results: 16% of survivors (52% female, mean age 34.7 years) and 14% of siblings had major ECG abnormalities. ECG abnormalities increased with decreasing LVEF. Integrating selected ECG data into the baseline model significantly improved prediction of sex-specific abnormal LVEF (c-statistic 0.66 vs 0.71), LVEF &lt;50% (0.66 vs 0.76) and LVEF &lt;45% (0.80 vs 0.86). While no survivor met the preset probability threshold in the first two models, the third model used five ECG variables to predict LVEF &lt;45% and was applicable for ruling out (sensitivity 93%, specificity 56%, negative predictive value 99.6%). Calibration and internal validation tests performed well. Conclusion: A clinical prediction model with ECG data (left bundle branch block, left atrial enlargement, left heart axis, Cornell's criteria for left ventricular hypertrophy and heart rate) may aid in ruling out LVEF &lt;45%.</p

    Echocardiography protocol for early detection of cardiac dysfunction in childhood cancer survivors in the multicenter DCCSS LATER 2 CARD study:Design, feasibility, and reproducibility

    Get PDF
    Background Cardiotoxicity is a well-known side effect after anthracyclines and chest radiotherapy in childhood cancer survivors (CCS). The DCCSS LATER 2 CARD (cardiology) study includes evaluation of echocardiographic measurements for early identification of CCS at highest risk of developing heart failure. This paper describes the design, feasibility, and reproducibility of the echocardiography protocol. Methods Echocardiograms from CCS and sibling controls were prospectively obtained at the participating centers and centrally analyzed. We describe the image acquisition, measurement protocol, and software-specific considerations for myocardial strain analyses. We report the feasibility of the primary outcomes of systolic and diastolic function, as well as reproducibility analyses in 30 subjects. Results We obtained 1,679 echocardiograms. Biplane ejection fraction (LVEF) measurement was feasible in 91% and 96% of CCS and siblings, respectively, global longitudinal strain (GLS) in 80% and 91%, global circumferential strain (GCS) in 86% and 89%, and >= 2 diastolic function parameters in 99% and 100%, right ventricle free wall strain (RVFWS) in 57% and 65%, and left atrial reservoir strain (LASr) in 72% and 79%. Intra-class correlation coefficients for inter-observer variability were 0.85 for LVEF, 0.76 for GLS, 0.70 for GCS, 0.89 for RVFWS and 0.89 for LASr. Intra-class correlation coefficients for intra-observer variability were 0.87 for LVEF, 0.82 for GLS, 0.82 for GCS, 0.85 for RVFWS and 0.79 for LASr. Conclusion The DCCSS LATER 2 CARD study includes a protocolized echocardiogram, with feasible and reproducible primary outcome measurements. This ensures high-quality outcome data for prevalence estimates and for reliable comparison of cardiac function parameters

    Presence and utility of electrocardiographic abnormalities in long-term childhood cancer survivors

    Get PDF
    Background: We assessed the prevalence and diagnostic value of ECG abnormalities for cardiomyopathy surveillance in childhood cancer survivors. Methods: In this cross-sectional study, 1381 survivors (≥5 years) from the Dutch Childhood Cancer Survivor Study part 2 and 272 siblings underwent a long-term follow-up ECG and echocardiography. We compared ECG abnormality prevalences using the Minnesota Code between survivors and siblings, and within biplane left ventricular ejection fraction (LVEF) categories. Among 880 survivors who received anthracycline, mitoxantrone or heart radiotherapy, logistic regression models using least absolute shrinkage and selection operator identified ECG abnormalities associated with three abnormal LVEF categories (&lt;52% in male/&lt;54% in female, &lt;50% and &lt;45%). We assessed the overall contribution of these ECG abnormalities to clinical regression models predicting abnormal LVEF, assuming an absence of systolic dysfunction with a &lt;1% threshold probability. Results: 16% of survivors (52% female, mean age 34.7 years) and 14% of siblings had major ECG abnormalities. ECG abnormalities increased with decreasing LVEF. Integrating selected ECG data into the baseline model significantly improved prediction of sex-specific abnormal LVEF (c-statistic 0.66 vs 0.71), LVEF &lt;50% (0.66 vs 0.76) and LVEF &lt;45% (0.80 vs 0.86). While no survivor met the preset probability threshold in the first two models, the third model used five ECG variables to predict LVEF &lt;45% and was applicable for ruling out (sensitivity 93%, specificity 56%, negative predictive value 99.6%). Calibration and internal validation tests performed well. Conclusion: A clinical prediction model with ECG data (left bundle branch block, left atrial enlargement, left heart axis, Cornell's criteria for left ventricular hypertrophy and heart rate) may aid in ruling out LVEF &lt;45%.</p

    Diagnostic tools for early detection of cardiac dysfunction in childhood cancer survivors:Methodological aspects of the Dutch late effects after childhood cancer (LATER) cardiology study

    Get PDF
    Background: Cancer therapy-related cardiac dysfunction and heart failure are major problems in long-term childhood cancer survivors (CCS). We hypothesize that assessment of more sensitive echo- and electrocardiographic measurements, and/or biomarkers will allow for improved recognition of patients with cardiac dysfunction before heart failure develops, and may also identify patients at lower risk for heart failure. Objective: To describe the methodology of the Dutch LATER cardiology study (LATER CARD). Methods: The LATER CARD study is a cross-sectional study in long-term CCS treated with (potentially) cardiotoxic cancer therapies and sibling controls. We will evaluate 1) the prevalence and associated (treatment related) risk factors of subclinical cardiac dysfunction in CCS compared to sibling controls and 2) the diagnostic value of echocardiography including myocardial strain and diastolic function parameters, blood biomarkers for cardiomyocyte apoptosis, oxidative stress, cardiac remodeling and inflammation and ECG or combinations of them in the surveillance for cancer therapy-related cardiac dysfunction. From 2017 to 2020 we expect to include 1900 CCS and 500 siblings. Conclusions: The LATER CARD study will provide knowledge on different surveillance modalities for detection of cardiac dysfunction in long-term CCS at risk for heart failure. The results of the study will enable us to improve long-term follow-up surveillance guidelines for CCS at risk for heart failure

    Extensive Cardiac Function Analyses Using Contemporary Echocardiography in Childhood Cancer Survivors:A DCCSS LATER Study

    Get PDF
    Background: Childhood cancer survivors (CCS) are at risk for cardiotoxicity. Objectives: We sought to assess how cardiac dysfunction measurements in CCS overlap and are differentially influenced by risk factors. Methods: This cross-sectional Dutch Childhood Cancer Survivor Study evaluated echocardiograms of 1,397 ≥5-year CCS and 277 siblings. Of CCS, n = 1,254 received cardiotoxic (anthracyclines/mitoxantrone/radiotherapy involving the heart region [RTheart]) and n = 143 received potentially cardiotoxic (cyclophosphamide, ifosfamide, or vincristine) therapy. We assessed demographic, treatment-related, and traditional cardiovascular risk factors for cardiac dysfunction using multivariable logistic regression. Results: CCS were a median of 26.7 years after diagnosis; 49% were women. Abnormal left ventricular ejection fraction (LVEF) (defined as &lt;52% in men, &lt;54% in women) occurred most commonly in CCS treated with anthracyclines and RTheart combined (38%). Age/sex-specific abnormal global longitudinal strain (GLS) occurred most commonly in CCS treated with RTheart, either with (41%) or without (38%) anthracyclines. Of CCS with normal LVEF, 20.2% showed abnormal GLS. Diastolic dysfunction grade ≥II was rare. Abnormal LVEF was mainly associated with female sex, anthracycline dose, and only in women, RTheart dose. Abnormal GLS was associated with female sex, RTheart dose, diastolic blood pressure, and only in women, anthracycline dose. Cyclophosphamide, ifosfamide, and vincristine were not associated with LVEF or GLS. Compared with siblings, CCS showed higher risk of abnormal LVEF (OR: 2.9; 95% CI: 1.4-6.6) and GLS (OR: 2.1; 95% CI: 1.2-3.7), independent of (potentially) cardiotoxic treatment-related and cardiovascular risk factors. Conclusions: Abnormal LVEF and GLS constitute complementary measures of systolic dysfunction among long-term CCS. Their diagnostic value may differ according to cardiotoxic exposures. Also, CCS have residual, unexplained risk of cardiac dysfunction.</p

    Extensive Cardiac Function Analyses Using Contemporary Echocardiography in Childhood Cancer Survivors:A DCCSS LATER Study

    Get PDF
    Background: Childhood cancer survivors (CCS) are at risk for cardiotoxicity.Objectives: We sought to assess how cardiac dysfunction measurements in CCS overlap and are differentially influenced by risk factors.Methods: This cross-sectional Dutch Childhood Cancer Survivor Study evaluated echocardiograms of 1,397 ≥5-year CCS and 277 siblings. Of CCS, n = 1,254 received cardiotoxic (anthracyclines/mitoxantrone/radiotherapy involving the heart region [RTheart]) and n = 143 received potentially cardiotoxic (cyclophosphamide, ifosfamide, or vincristine) therapy. We assessed demographic, treatment-related, and traditional cardiovascular risk factors for cardiac dysfunction using multivariable logistic regression.Results: CCS were a median of 26.7 years after diagnosis; 49% were women. Abnormal left ventricular ejection fraction (LVEF) (defined as &lt;52% in men, &lt;54% in women) occurred most commonly in CCS treated with anthracyclines and RTheart combined (38%). Age/sex-specific abnormal global longitudinal strain (GLS) occurred most commonly in CCS treated with RTheart, either with (41%) or without (38%) anthracyclines. Of CCS with normal LVEF, 20.2% showed abnormal GLS. Diastolic dysfunction grade ≥II was rare. Abnormal LVEF was mainly associated with female sex, anthracycline dose, and only in women, RTheart dose. Abnormal GLS was associated with female sex, RTheart dose, diastolic blood pressure, and only in women, anthracycline dose. Cyclophosphamide, ifosfamide, and vincristine were not associated with LVEF or GLS. Compared with siblings, CCS showed higher risk of abnormal LVEF (OR: 2.9; 95% CI: 1.4-6.6) and GLS (OR: 2.1; 95% CI: 1.2-3.7), independent of (potentially) cardiotoxic treatment-related and cardiovascular risk factors.Conclusions: Abnormal LVEF and GLS constitute complementary measures of systolic dysfunction among long-term CCS. Their diagnostic value may differ according to cardiotoxic exposures. Also, CCS have residual, unexplained risk of cardiac dysfunction.</p
    corecore