4 research outputs found

    Terrestrial behavior in titi monkeys (Callicebus, Cheracebus, and Plecturocebus) : potential correlates, patterns, and differences between genera

    Get PDF
    For arboreal primates, ground use may increase dispersal opportunities, tolerance to habitat change, access to ground-based resources, and resilience to human disturbances, and so has conservation implications. We collated published and unpublished data from 86 studies across 65 localities to assess titi monkey (Callicebinae) terrestriality. We examined whether the frequency of terrestrial activity correlated with study duration (a proxy for sampling effort), rainfall level (a proxy for food availability seasonality), and forest height (a proxy for vertical niche dimension). Terrestrial activity was recorded frequently for Callicebus and Plecturocebus spp., but rarely for Cheracebus spp. Terrestrial resting, anti-predator behavior, geophagy, and playing frequencies in Callicebus and Plecturocebus spp., but feeding and moving differed. Callicebus spp. often ate or searched for new leaves terrestrially. Plecturocebus spp. descended primarily to ingest terrestrial invertebrates and soil. Study duration correlated positively and rainfall level negatively with terrestrial activity. Though differences in sampling effort and methods limited comparisons and interpretation, overall, titi monkeys commonly engaged in a variety of terrestrial activities. Terrestrial behavior in Callicebus and Plecturocebus capacities may bolster resistance to habitat fragmentation. However, it is uncertain if the low frequency of terrestriality recorded for Cheracebus spp. is a genus-specific trait associated with a more basal phylogenetic position, or because studies of this genus occurred in pristine habitats. Observations of terrestrial behavior increased with increasing sampling effort and decreasing food availability. Overall, we found a high frequency of terrestrial behavior in titi monkeys, unlike that observed in other pitheciids

    An island of wildlife in a human-dominated landscape: The last fragment of primary forest on the Osa Peninsula's Golfo Dulce coastline, Costa Rica.

    No full text
    Habitat loss and fragmentation, together with related edge effects, are the primary cause of global biodiversity decline. Despite a large amount of research quantifying and demonstrating the degree of these effects, particularly in top predators and their prey, most fragmented patches are lost before their conservation value is recognized. This study evaluates terrestrial vertebrates in Playa Sandalo, in the Osa Peninsula of Costa Rica, which represents the last patch of "primary" forest in the most developed part of this region. Our study indicates that the diversity of ground species detected within Playa Sandalo rival other areas under active conservation like Lapa Rios Ecolodge. Historical fragmentation, together with the maintenance of forest cover in isolated conditions, are potentially responsible for the species composition observed within Playa Sandalo; facilitating the development of a prey-predator system including ocelots, medium-size mammals, and birds at the top of the trophic chain. The high diversity of both habitat and vertebrates, its prime location and cultural value, as well as its unique marine importance represent the ideal conditions for conservation. Conservation of Playa Sandalo, and other small tropical forest remnants, might represent the only management option for wildlife conservation within ever growing human-dominated landscapes

    Terrestrial Behavior in Titi Monkeys (Callicebus, Cheracebus, and Plecturocebus): Potential Correlates, Patterns, and Differences between Genera

    No full text
    For arboreal primates, ground use may increase dispersal opportunities, tolerance to habitat change, access to ground-based resources, and resilience to human disturbances, and so has conservation implications. We collated published and unpublished data from 86 studies across 65 localities to assess titi monkey (Callicebinae) terrestriality. We examined whether the frequency of terrestrial activity correlated with study duration (a proxy for sampling effort), rainfall level (a proxy for food availability seasonality), and forest height (a proxy for vertical niche dimension). Terrestrial activity was recorded frequently for Callicebus and Plecturocebus spp., but rarely for Cheracebus spp. Terrestrial resting, anti-predator behavior, geophagy, and playing frequencies in Callicebus and Plecturocebus spp., but feeding and moving differed. Callicebus spp. often ate or searched for new leaves terrestrially. Plecturocebus spp. descended primarily to ingest terrestrial invertebrates and soil. Study duration correlated positively and rainfall level negatively with terrestrial activity. Though differences in sampling effort and methods limited comparisons and interpretation, overall, titi monkeys commonly engaged in a variety of terrestrial activities. Terrestrial behavior in Callicebus and Plecturocebus capacities may bolster resistance to habitat fragmentation. However, it is uncertain if the low frequency of terrestriality recorded for Cheracebus spp. is a genus-specific trait associated with a more basal phylogenetic position, or because studies of this genus occurred in pristine habitats. Observations of terrestrial behavior increased with increasing sampling effort and decreasing food availability. Overall, we found a high frequency of terrestrial behavior in titi monkeys, unlike that observed in other pitheciids. © 2019, Springer Science+Business Media, LLC, part of Springer Nature
    corecore