23 research outputs found

    Common Inflammation-Related Candidate Gene Variants and Acute Kidney Injury in 2647 Critically Ill Finnish Patients

    Get PDF
    Acute kidney injury (AKI) is a syndrome with high incidence among the critically ill. Because the clinical variables and currently used biomarkers have failed to predict the individual susceptibility to AKI, candidate gene variants for the trait have been studied. Studies about genetic predisposition to AKI have been mainly underpowered and of moderate quality. We report the association study of 27 genetic variants in a cohort of Finnish critically ill patients, focusing on the replication of associations detected with variants in genes related to inflammation, cell survival, or circulation. In this prospective, observational Finnish Acute Kidney Injury (FINNAKI) study, 2647 patients without chronic kidney disease were genotyped. We defined AKI according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria. We compared severe AKI (Stages 2 and 3, n = 625) to controls (Stage 0, n = 1582). For genotyping we used iPLEX(TM) Assay (Agena Bioscience). We performed the association analyses with PLINK software, using an additive genetic model in logistic regression. Despite the numerous, although contradictory, studies about association between polymorphisms rs1800629 in TNFA and rs1800896 in IL10 and AKI, we found no association (odds ratios 1.06 (95% CI 0.89-1.28, p = 0.51) and 0.92 (95% CI 0.80-1.05, p = 0.20), respectively). Adjusting for confounders did not change the results. To conclude, we could not confirm the associations reported in previous studies in a cohort of critically ill patients.Peer reviewe

    Heme oxygenase-1 repeat polymorphism in septic acute kidney injury

    Get PDF
    Acute kidney injury (AKI) is a syndrome that frequently affects the critically ill. Recently, an increased number of dinucleotide repeats in the HMOX1 gene were reported to associate with development of AKI in cardiac surgery. We aimed to test the replicability of this finding in a Finnish cohort of critically ill septic patients. This multicenter study was part of the national FINNAKI study. We genotyped 300 patients with severe AKI (KDIGO 2 or 3) and 353 controls without AKI (KDIGO 0) for the guanine-thymine (GTn) repeat in the promoter region of the HMOX1 gene. The allele calling was based on the number of repeats, the cut off being 27 repeats in the S-L (short to long) classification, and 27 and 34 repeats for the S-M-L2 (short to medium to very long) classification. The plasma concentrations of heme oxygenase-1 (HO-1) enzyme were measured on admission. The allele distribution in our patients was similar to that published previously, with peaks at 23 and 30 repeats. The S-allele increases AKI risk. An adjusted OR was 1.30 for each S-allele in an additive genetic model (95% CI 1.01-1.66; p = 0.041). Alleles with a repeat number greater than 34 were significantly associated with lower HO-1 concentration (p<0.001). In septic patients, we report an association between a short repeat in HMOX1 and AKI risk

    Low-temperature growth of multi-walled carbon nanotubes by thermal CVD

    No full text
    Low-temperature thermal chemical vapor deposition (thermal CVD) synthesis of multi-walled carbon nanotubes (MWCNTs) was studied using a large variety of different precursor compounds. Cyclopentene oxide, tetrahydrofuran, methanol, and xylene: methanol mixture as oxygen containing heteroatomic precursors, while xylene and acetylene as conventional hydrocarbon feedstocks were applied in the experiments. The catalytic activity of Co, Fe, Ni, and their bi-as well as tri-metallic combinations were tested for the reactions. Low-temperature CNT growth occurred at 400 degrees C when using bi-metallic Co-Fe and tri-metallic Ni-Co-Fe catalyst (on alumina) and methanol or acetylene as precursors. In the case of monometallic catalyst nanoparticles, only Co (both on alumina and on silica) was found to be active in the low temperature growth (below 500 degrees C) from oxygenates such as cyclopentene oxide and methanol. The structure and composition of the achieved MWCNTs products were studied by scanning and transmission electron microscopy (SEM and TEM) as well as by Raman and X-ray photoelectron spectroscopy (XPS) and by X-ray diffraction (XRD). The successful MWCNT growth below 500 degrees C is promising from the point of view of integrating MWCNT materials into existing IC fabrication technologies. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    One-Pot Liquid-Phase Catalytic Conversion of Ethanol to 1-Butanol over Aluminium Oxide -  The Effect of the Active Metal on the Selectivity

    Get PDF
    Direct catalytic valorization of bioethanol to 1-butanol over different alumina supported catalysts was studied. Thirteen (13) heterogeneous catalysts were screened in search for the optimal material composition for direct one-pot conversion of ethanol to 1-butanol. For the most promising catalyst, a 25% ethanol conversion with 80% selectivity (among liquid carbon products) to 1-butanol could be reached at 250 °C. Additionally, the reaction kinetics and mechanisms were further investigated upon use of the most suitable catalyst candidate

    Three-Dimensional Carbon Nanotube Scaffolds as Particulate Filters and Catalyst Support Membranes

    No full text
    Three-dimensional carbon nanotube scaffolds created using micromachined Si/SiO2 templates are used as nanoparticulate filters and support membranes for gas-phase heterogeneous catalysis. The filtering efficiency of better than 99% is shown for the scaffolds in filtering submicrometer particles from air. In the hydrogenation of propene to propane reaction low activation energy of E-a similar to 27.8 +/- 0.61 kJ . mol(-1), a considerably high turnover rate of similar to 1.1 molecules . Pd site(-1) . s(-1) and durable activity for the reaction are observed with Pd decorated membranes. It is demonstrated that appropriate engineering of macroscopic-ordered nanotube architectures can lead to multifunctional applications
    corecore