278 research outputs found

    Microglial Priming and Alzheimer’s Disease: A Possible Role for (Early) Immune Challenges and Epigenetics?

    Get PDF
    Neuroinflammation is thought to contribute to Alzheimer’s disease (AD) pathogenesis that is, to a large extent, mediated by microglia. Given the tight interaction between the immune system and the brain, peripheral immune challenges can profoundly affect brain function. Indeed, both preclinical and clinical studies have indicated that an aberrant inflammatory response can elicit behavioral impairments and cognitive deficits, especially when the brain is in a vulnerable state, e.g. during early development, as a result of aging, or under disease conditions like AD. However, how exactly peripheral immune challenges affect brain function and whether this is mediated by aberrant microglial functioning remains largely elusive. In this review, we hypothesize that; 1) systemic immune challenges occurring during vulnerable periods of life can increase the propensity to induce later cognitive dysfunction and accelerate AD pathology, and 2) that 'priming' of microglial cells is instrumental in mediating this vulnerability. We highlight how microglia can be primed by both neonatal infections as well as by aging, two periods of life during which microglial activity is known to be specifically upregulated. Lasting changes in (the ratios of) specific microglial phenotypes can result in an exaggerated pro-inflammatory cytokine response to subsequent inflammatory challenges. While the resulting changes in brain function are initially transient, a continued and/or excess release of such pro-inflammatory cytokines can activate various downstream cellular cascades known to be relevant for AD. Finally, we discuss microglial priming and the aberrant microglial response as potential target for treatment strategies for AD

    The phosphate potential maintained by mitochondria in State 4 is proportional to the proton-motive force

    Get PDF
    AbstractEvidence is presented for a proportional relationship between the extramitochondrial phosphate potential (ΔGexp) and the proton-motive force (Δ\̃gmH+) across the mitochondrial membrane in rat-liver mitochondria oxidising succinate in State 4, when Δ\̃gmH+ is varied by addition of uncouplers or malonate. This relationship was found when precautions were taken to minimise interference with the determination of ΔGpex and Δ\̃gmH+ by intramitochondrial nucleotides, adenylate kinase activity, the quenching method, and Δ\̃gmH+-dependent changes in matrix volume. A non-proportional ΔGpex/Δ\̃gmH+ relationship was obtained when these precautions were omitted. Our results do not support mosaic protonic coupling, but are not necessarily in conflict with other localised coupling schemes

    Exploring reported genes of microglia RNA-sequencing data:Uses and considerations

    Get PDF
    The advent of RNA-sequencing techniques has made it possible to generate large, unbiased gene expression datasets of tissues and cell types. Several studies describing gene expression data of microglia from Alzheimer's disease or multiple sclerosis have been published, aiming to generate more insight into the role of microglia in these neurological diseases. Though the raw sequencing data are often deposited in open access databases, the most accessible source of data for scientists is what is reported in published manuscripts. We observed a relatively limited overlap in reported differentially expressed genes between various microglia RNA-sequencing studies from multiple sclerosis or Alzheimer's diseases. It was clear that differences in experimental set up influenced the number of overlapping reported genes. However, even when the experimental set up was very similar, we observed that overlap in reported genes could be low. We identified that papers reporting large numbers of differentially expressed microglial genes generally showed higher overlap with other papers. In addition, though the pathology present within the tissue used for sequencing can greatly influence microglia gene expression, often the pathology present in samples used for sequencing was underreported, leaving it difficult to assess the data. Whereas reanalyzing every raw dataset could reduce the variation that contributes to the observed limited overlap in reported genes, this is not feasible for labs without (access to) bioinformatic expertise. In this study, we thus provide an overview of data present in manuscripts and their supplementary files and how these data can be interpreted

    A high‐quality functional genome assembly of delia radicum L. (diptera: anthomyiidae) annotated from egg to adult

    Get PDF
    Abstract Belowground herbivores are overseen and underestimated, even though they can cause significant economic losses in agriculture. The cabbage root fly Delia radicum (Anthomyiidae) is a common pest in Brassica species, including agriculturally important crops, such as oilseed rape. The damage is caused by the larvae, which feed specifically on the taproots of Brassica plants until they pupate. The adults are aboveground‐living generalists feeding on pollen and nectar. Female flies are attracted by chemical cues in Brassica plants for oviposition. An assembled and annotated genome can elucidate which genetic mechanisms underlie the adaptation of D . radicum to its host plants and their specific chemical defences, in particular isothiocyanates. Therefore, we assembled, annotated and analysed the D . radicum genome using a combination of different next‐generation sequencing and bioinformatic approaches. We assembled a chromosome‐level D . radicum genome using PacBio and Hi‐C Illumina sequence data. Combining Canu and 3D‐DNA genome assembler, we constructed a 1.3 Gbp genome with an N50 of 242 Mbp and 6 pseudo‐chromosomes. To annotate the assembled D . radicum genome, we combined homology‐, transcriptome‐ and ab initio‐prediction approaches. In total, we annotated 13,618 genes that were predicted by at least two approaches. We analysed egg, larval, pupal and adult transcriptomes in relation to life‐stage specific molecular functions. This high‐quality annotated genome of D . radicum is a first step to understanding the genetic mechanisms underlying host plant adaptation. As such, it will be an important resource to find novel and sustainable approaches to reduce crop losses to these pests

    Yeast Infections after Esophagectomy:A Retrospective Analysis

    Get PDF
    Esophageal malignancy is a disease with poor prognosis. Curative therapy incorporates surgery and is burdensome with high rates of infection morbidity and mortality. The role of yeast as causative organisms of post-esophagectomy infections is poorly defined. Consequently, the benefits of specific antifungal prophylactic therapy in improving patient outcome are unclear. Therefore, this study aimed at investigating the incidence of yeast infections at the University Medical Center Groningen among 565 post-esophagectomy patients between 1991 and 2017. The results show that 7.3% of the patients developed a yeast infection after esophageal resection with significantly increased incidence among patients suffering from diabetes mellitus. For patients with yeast infections, higher Acute Physiology and Chronic Health Evaluation (APACHE) II scores, more frequent intensive care unit readmissions, prolonged hospital stays and higher mortality rates were observed. One-year survival was significantly lower for patients with a yeast infection, as well as diabetes mellitus and yeast-positive pleural effusion. We conclude that the incidence of yeast infections following esophagectomy is considerable, and that patients with diabetes mellitus are at increased risk. Furthermore, yeast infections are associated with higher complication rates and mortality. These observations encourage further prospective investigations on the possible benefits of antifungal prophylactic therapy for esophagectomy patients

    Regulation of microglial TMEM119 and P2RY12 immunoreactivity in multiple sclerosis white and grey matter lesions is dependent on their inflammatory environment

    Get PDF
    Multiple Sclerosis (MS) is the most common cause of acquired neurological disability in young adults, pathologically characterized by leukocyte infiltration of the central nervous system, demyelination of the white and grey matter, and subsequent axonal loss. Microglia are proposed to play a role in MS lesion formation, however previous literature has not been able to distinguish infiltrated macrophages from microglia. Therefore, in this study we utilize the microglia-specific, homeostatic markers TMEM119 and P2RY12 to characterize their immunoreactivity in MS grey matter lesions in comparison to white matter lesions. Furthermore, we assessed the immunological status of the white and grey matter lesions, as well as the responsivity of human white and grey matter derived microglia to inflammatory mediators. We are the first to show that white and grey matter lesions in post-mortem human material differ in their immunoreactivity for the homeostatic microglia-specific markers TMEM119 and P2RY12. In particular, whereas immunoreactivity for TMEM119 and P2RY12 is decreased in the center of WMLs, immunoreactivity for both markers is not altered in GMLs. Based on data from post-mortem human microglia cultures, treated with IL-4 or IFNÎł+LPS and on counts of CD3+ or CD20+ lymphocytes in lesions, we show that downregulation of TMEM119 and P2RY12 immunoreactivity in MS lesions corresponds with the presence of lymphocytes and lymphocyte-derived cytokines within the parenchyma but not in the meninges. Furthermore, the presence of TMEM119+ and partly P2RY12+ microglia in pre-active lesions as well as in the rim of active white and grey matter lesions, in addition to TMEM119+ and P2RY12+ rod-like microglia in subpial grey matter lesions suggest that blocking the entrance of lymphocytes into the CNS of MS patients may not interfere with all possible effects of TMEM119+ and P2RY12+ microglia in both white and grey matter MS lesions

    Astrocyte-derived tissue Transglutaminase affects fibronectin deposition, but not aggregation, during cuprizone-induced demyelination

    Get PDF
    Astrogliosis as seen in Multiple Sclerosis (MS) develops into astroglial scarring, which is beneficial because it seals off the site of central nervous system (CNS) damage. However, astroglial scarring also forms an obstacle that inhibits axon outgrowth and (re) myelination in brain lesions. This is possibly an important cause for incomplete remyelination in the CNS of early stage MS patients and for failure in remyelination when the disease progresses. In this study we address whether under demyelinating conditions in vivo, tissue Transglutaminase (TG2), a Ca2+-dependent enzyme that catalyses posttranslational modification of proteins, contributes to extracellular matrix (ECM) deposition and/or aggregation. We used the cuprizone model for de- and remyelination. TG2 immunoreactivity and enzymatic activity time-dependently appeared in astrocytes and ECM, respectively, in the corpus callosum of cuprizone-treated mice. Enhanced presence of soluble monomeric and multimeric fibronectin was detected during demyelination, and fibronectin immunoreactivity was slightly decreased in cuprizone-treated TG2(-/-) mice. In vitro TG2 overexpression in astrocytes coincided with more, while knock-down of TG2 with less fibronectin production. TG2 contributes, at least partly, to fibronectin production, and may play a role in fibronectin deposition during cuprizone-induced demyelination. Our observations are of interest in understanding the functional implications of TG2 during astrogliosis

    Monocyte behaviour and tissue transglutaminase expression during experimental autoimmune encephalomyelitis in transgenic CX3CR1gfp/gfp mice

    Get PDF
    Leukocyte infiltration into the central nervous system (CNS) is a key pathological feature in multiple sclerosis (MS) and the MS animal model experimental autoimmune encephalomyelitis (EAE). Recently, preventing leukocyte influx into the CNS of MS patients is the main target of MS therapies and insight into cell behaviour in the circulation is needed for further elucidation of such therapies. In this study, we aimed at in vivo visualization of monocytes in a time-dependent manner during EAE. Using intravital two-photon microscopy (IVM), we imaged CX3CR1gfp/gfp mice during EAE, visualizing CX3CR1-GFP+ monocytes and their dynamics in the spinal cord vasculature. Our observations showed that intraluminal crawling of CX3CR1-GFP+ monocytes increased even before the clinical onset of EAE due to immunization of the animals. Furthermore, intraluminal crawling remained elevated during ongoing clinical disease. Besides, the displacement of these cells was larger during the peak of EAE compared to the control animals. In addition, we showed that the enzyme tissue transglutaminase (TG2), which is present in CNS-infiltrated cells in MS patients, is likewise found in CX3CR1-GFP+ monocytes in the spinal cord lesions and at the luminal side of the vasculature during EAE. It might thereby contribute to adhesion and crawling of monocytes, facilitating extravasation into the CNS. Thus, we put forward that interference with monocyte adhesion, by e.g. inhibition of TG2, should be applied at a very early stage of EAE and possibly MS, to effectively combat subsequent pathology

    Axon-Myelin Unit Blistering as Early Event in MS Normal Appearing White Matter

    Get PDF
    Objective: Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease of unknown etiology. Although the prevalent view regards a CD4 +-lymphocyte autoimmune reaction against myelin at the root of the disease, recent studies propose autoimmunity as a secondary reaction to idiopathic brain damage. To gain knowledge about this possibility we investigated the presence of axonal and myelinic morphological alterations, which could implicate imbalance of axon-myelin units as primary event in MS pathogenesis. Methods: Using high resolution imaging histological brain specimens from patients with MS and non-neurological/non-MS controls, we explored molecular changes underpinning imbalanced interaction between axon and myelin in normal appearing white matter (NAWM), a region characterized by normal myelination and absent inflammatory activity. Results: In MS brains, we detected blister-like swellings formed by myelin detachment from axons, which were substantially less frequently retrieved in non-neurological/non-MS controls. Swellings in MS NAWM presented altered glutamate receptor expression, myelin associated glycoprotein (MAG) distribution, and lipid biochemical composition of myelin sheaths. Changes in tethering protein expression, widening of nodes of Ranvier and altered distribution of sodium channels in nodal regions of otherwise normally myelinated axons were also present in MS NAWM. Finally, we demonstrate a significant increase, compared with controls, in citrullinated proteins in myelin of MS cases, pointing toward biochemical modifications that may amplify the immunogenicity of MS myelin. Interpretation: Collectively, the impaired interaction of myelin and axons potentially leads to myelin disintegration. Conceptually, the ensuing release of (post-translationally modified) myelin antigens may elicit a subsequent immune attack in MS. ANN NEUROL 2021;89:711–725

    Distinct gene expression in demyelinated white and grey matter areas of patients with multiple sclerosis

    Get PDF
    Demyelination of the central nervous system is a prominent pathological hallmark of multiple sclerosis and affects both white and grey matter. However, demyelinated white and grey matter exhibit clear pathological differences, most notably the presence or absence of inflammation and activated glial cells in white and grey matter, respectively. In order to gain more insight into the differential pathology of demyelinated white and grey matter areas, we micro-dissected neighbouring white and grey matter demyelinated areas as well as normal-appearing matter from leucocortical lesions of human post-mortem material and used these samples for RNA sequencing. Our data show that even neighbouring demyelinated white and grey matter of the same leucocortical have a distinct gene expression profile and cellular composition. We propose that, based on their distinct expression profile, pathological processes in neighbouring white and grey matter are likely different which could have implications for the efficacy of treating grey matter lesions with current anti-inflammatory-based multiple sclerosis drugs
    • 

    corecore