27 research outputs found
Mechanisms underlying cognitive deficits in a mouse model for Costello Syndrome are distinct from other RASopathy mouse models
RASopathies, characterized by germline mutations in genes encoding proteins of the RAS-ERK signaling pathway, show overlapping phenotypes, which manifest themselves with a varying severity of intellectual disability. However, it is unclear to what extent they share the same downstream pathophysiology that underlies the cognitive deficits. Costello syndrome (CS) is a rare RASopathy caused by activating mutations in the HRAS gene. Here we investigated the mechanisms underlying the cognitive deficits of HRas G12V/G12V mice. HRas G12V/G12V mice showed robust upregulation of ERK signaling, neuronal hypertrophy, increased brain volume, spatial learning deficits, and impaired mGluR-dependent long-term depression (LTD). In contrast, long-term potentiation (LTP), which is affected in other RASopathy mouse models was unaffected. Treatment with lovastatin, a HMG-CoA-Reductase inhibitor which has been shown to rescue the behavioral phenotypes of mouse models of NF1 and Noonan syndrome, was unable to restore ERK signaling and the cognitive deficits of HRas G12V/G12V mice. Administration of a potent mitogen-activated protein kinase (MEK) inhibitor rescued the ERK upregulation and the mGluR-LTD deficit of HRas G12V/G12V mice, but failed to rescue the cognitive deficits. Taken together, this study indicates that the fundamental molecular and cellular mechanisms underlying the cognitive aspects of different RASopathies are remarkably distinct, and may require disease specific treatments
Clinical and virological characteristics of hospitalised COVID-19 patients in a German tertiary care centre during the first wave of the SARS-CoV-2 pandemic: a prospective observational study
Purpose: Adequate patient allocation is pivotal for optimal resource management in strained healthcare systems, and requires detailed knowledge of clinical and virological disease trajectories. The purpose of this work was to identify risk factors associated with need for invasive mechanical ventilation (IMV), to analyse viral kinetics in patients with and without IMV and to provide a comprehensive description of clinical course.
Methods: A cohort of 168 hospitalised adult COVID-19 patients enrolled in a prospective observational study at a large European tertiary care centre was analysed.
Results: Forty-four per cent (71/161) of patients required invasive mechanical ventilation (IMV). Shorter duration of symptoms before admission (aOR 1.22 per day less, 95% CI 1.10-1.37, p < 0.01) and history of hypertension (aOR 5.55, 95% CI 2.00-16.82, p < 0.01) were associated with need for IMV. Patients on IMV had higher maximal concentrations, slower decline rates, and longer shedding of SARS-CoV-2 than non-IMV patients (33 days, IQR 26-46.75, vs 18 days, IQR 16-46.75, respectively, p < 0.01). Median duration of hospitalisation was 9 days (IQR 6-15.5) for non-IMV and 49.5 days (IQR 36.8-82.5) for IMV patients.
Conclusions: Our results indicate a short duration of symptoms before admission as a risk factor for severe disease that merits further investigation and different viral load kinetics in severely affected patients. Median duration of hospitalisation of IMV patients was longer than described for acute respiratory distress syndrome unrelated to COVID-19
Exome sequencing of individuals with Huntington’s disease implicates FAN1 nuclease activity in slowing CAG expansion and disease onset
The age at onset of motor symptoms in Huntington’s disease (HD) is driven by HTT CAG repeat length but modified by other genes. In this study, we used exome sequencing of 683 patients with HD with extremes of onset or phenotype relative to CAG length to identify rare variants associated with clinical effect. We discovered damaging coding variants in candidate modifier genes identified in previous genome-wide association studies associated with altered HD onset or severity. Variants in FAN1 clustered in its DNA-binding and nuclease domains and were associated predominantly with earlier-onset HD. Nuclease activities of purified variants in vitro correlated with residual age at motor onset of HD. Mutating endogenous FAN1 to a nuclease-inactive form in an induced pluripotent stem cell model of HD led to rates of CAG expansion similar to those observed with complete FAN1 knockout. Together, these data implicate FAN1 nuclease activity in slowing somatic repeat expansion and hence onset of HD
Synthesis and reactions of potassium acyltrifluoroborates (KATs) and trifluoroborate iminiums (TIMs)
Synthesis of secondary and tertiary amides without coupling agents from amines and potassium acyltrifluoroborates (KATs)
Although highly effective for most amide syntheses, the activation of carboxylic acids requires the use of problematic coupling reagents and is often poorly suited for challenging cases such as N-methyl amino acids. As an alternative to both secondary and tertiary amides, we report their convenient synthesis by the rapid oxidation of trifluoroborate iminiums (TIMs). TIMs are easily prepared by acid-promoted condensation of potassium acyltrifluoroborates (KATs) and amines and are cleanly and rapidly oxidized to amides with hydrogen peroxide. The overall transformation can be conducted either as a one-pot procedure or via isolation of the TIM. The unique nature of the neutral, zwitterionic TIMs makes possible the preparation of tertiary amides via an iminium species that would not be accessible from other carbonyl derivatives and can be conducted in the presence of unprotected functional groups including acids, alcohols and thioethers. In preliminary studies, this approach was applied to the late-stage modifications of long peptides and the iterative synthesis of short, N-methylated peptides without the need for coupling agents.ISSN:2041-6520ISSN:2041-653
Conversion of carboxylic acids to potassium acyltrifluoroborates (KATs) by Cu-catalyzed borylation of mixed anhydrides
We report the preparation of potassium acyltrifluoroborates (KATs) from widely-available carboxylic acids. Mixed anhydrides of carboxylic acids were prepared using isobutyl chloroformate and transformed to the corresponding KATs using a commercial copper catalyst, B2(pin)2 and aqueous KHF2. This method allows for the facile preparation of aliphatic, aromatic, and amino acid-derived KATs and is compatible with a variety of functional groups including alkenes, esters, halides, nitriles, and protected amines
Facile synthesis of alpha-aminoboronic acids from amines and potassium acyltrifluoroborates (KATs) via trifluoroborate-iminiums (TIMs)
We report the facile formation of trifluoroborate-iminiums (TIMs) from potassium acyltrifluoroborates (KATs) and the transformation of TIMs to α-aminotrifluoroborates by reduction or Grignard additions. Conditions for the hydrolysis of α-aminotrifluoroborates to α-aminoboronic acids, which are important biologically active compounds, were established. This new methodology allows access to sterically demanding α-aminoboronic acids that are not easily prepared with currently available methods. This work also introduces TIMs, that can be easily prepared and handled, as a new category of functional groups that serve as precursors to valuable organic compounds.ISSN:2041-6520ISSN:2041-653
Synthesis of N, N-Alkylated α-Tertiary Amines by Coupling of α-Aminoalkyltrifluoroborates and Grignard Reagents
ISSN:1523-7060ISSN:1523-705
Antioxidant power measurement in platelet concentrates treated by two pathogen inactivation systems in different blood centres.
The antioxidant power measurement can be useful to validate the execution of the pathogen inactivation treatment of platelet concentrates. The aim of this study is to evaluate the technology on different blood preparations including INTERCEPT and Mirasol treatments that are in routine use in Belgium and Luxemburg.
The antioxidant power measurement was tested on 78 apheresis platelet concentrates and 54 pools of buffy-coats-derived platelet concentrates before and after INTERCEPT treatment. In addition, 100 Reveos platelet pools were tested before and after Mirasol treatment. The antioxidant power was quantified electrochemically using disposable devices and was expressed as equivalent ascorbic acid concentration.
Mean results for apheresis platelet concentrates were of 90 ± 14 and 35 ± 10 µmol/l eq. ascorbic acid before and after INTERCEPT treatment, respectively. The mean results for pools of buffy-coats-derived platelet concentrates were of 81 ± 10 and 29 ± 4 eq. µmol/l ascorbic acid before and after INTERCEPT treatment, respectively. For buffy-coats-derived platelet concentrates treated by Mirasol technology, the mean results were of 98 ± 11 and 32 ± 10 µmol/l eq. ascorbic acid before and after illumination, respectively.
The antioxidant power significantly decreases with pathogen inactivation treatments for platelet concentrates treated by INTERCEPT or Mirasol technologies
In Vitro Comparative Study of Platelets Treated with Two Pathogen-Inactivation Methods to Extend Shelf Life to 7 Days
Background and Objectives: Since 2015, platelet products have been pathogen-inactivated (PI) at the Luxemburgish Red Cross (LRC) using Riboflavin and UV light (RF-PI). As the LRC should respond to hospital needs at any time, platelet production exceeds the demand, generating a discard rate of 18%. To reduce this, we consider the extension of storage time from 5 to 7 days. This study’s objective was to evaluate the in vitro 7-day platelet-storage quality, comparing two PI technologies, RF-PI and amotosalen/UVA light (AM-PI), for platelet pools from whole-blood donations (PPCs) and apheresis platelets collected from single apheresis donation (APCs). Materials and Methods: For each product type, 6 double-platelet concentrates were prepared and divided into 2 units; one was treated with RF-PI and the other by AM-PI. In vitro platelet-quality parameters were tested pre- and post-PI, at days 5 and 7. Results: Treatment and storage lesions were observed in PPCs and APCs with both PI methods. We found a higher rate of lactate increase and glucose depletion, suggesting a stronger stimulation of the glycolytic pathway, a higher Annexin V binding, and a loss of swirling in the RF-PI-treated units from day 5. The platelet loss was significantly higher in the AM-PI compared with the RF-PI units. Conclusions: Results suggest that RF-PI treatment has a higher deleterious impact on in vitro platelet quality compared to AM-PI, but we observed higher loss of platelets with AM-PI due to the post-illumination amotosalen adsorption step. If 7-day storage is needed, it can only be achieved with AM-PI, based on our quality criteria