27 research outputs found

    Neuronal Cholesterol Accumulation Induced by Cyp46a1 Down-Regulation in Mouse Hippocampus Disrupts Brain Lipid Homeostasis

    Get PDF
    Impairment in cholesterol metabolism is associated with many neurodegenerative disorders including Alzheimer's disease (AD). However, the lipid alterations underlying neurodegeneration and the connection between altered cholesterol levels and AD remains not fully understood. We recently showed that cholesterol accumulation in hippocampal neurons, induced by silencing Cyp46a1 gene expression, leads to neurodegeneration with a progressive neuronal loss associated with AD-like phenotype in wild-type mice. We used a targeted and non-targeted lipidomics approach by liquid chromatography coupled to high-resolution mass spectrometry to further characterize lipid modifications associated to neurodegeneration and cholesterol accumulation induced by CYP46A1 inhibition. Hippocampus lipidome of normal mice was profiled 4 weeks after cholesterol accumulation due to Cyp46a1 gene expression down-regulation at the onset of neurodegeneration. We showed that major membrane lipids, sphingolipids and specific enzymes involved in phosphatidylcholine and sphingolipid metabolism, were rapidly increased in the hippocampus of AAV-shCYP46A1 injected mice. This lipid accumulation was associated with alterations in the lysosomal cargoe, accumulation of phagolysosomes and impairment of endosome-lysosome trafficking. Altogether, we demonstrated that inhibition of cholesterol 24-hydroxylase, key enzyme of cholesterol metabolism leads to a complex dysregulation of lipid homeostasis. Our results contribute to dissect the potential role of lipids in severe neurodegenerative diseases like AD

    Thermophorèse de particules microniques de silice par la méthode de fractionnement par couplage flux-force avec gradient thermique

    No full text
    La méthode de fractionnement par couplage flux-force avec gradient thermique, technique de séparation basée sur le couplage de la thermophorèse et d'un écoulement présentant un profil de vitesses non-uniforme, a été utilisée afin de tenter de mettre en évidence l'existence d'une migration thermophorétique d'une suspension (particules de silice de 3 æm de diamètre). Une étude théorique a permis de définir des conditions expérimentales permettant de limiter les effets gravitationnels et hydrodynamiques. L'observation d'une différence de temps d'élution avec ou sans gradient thermique conduit à affirmer l'existence de la thermophorèse de particules microniques. L'influence des paramètres opératoires (concentration, débit, gradient thermique, nature des particules) sur la rétention a été étudiée. Une approche méthodologique spécifique a été développée pour estimer la mobilité thermophorétique des particules en fonction de leur nature et du liquide vecteur.AIX-MARSEILLE3-BU Sc.St Jérô (130552102) / SudocSudocFranceF

    Weak protein–cationic co-ion interactions addressed by X-ray crystallography and mass spectrometry

    Get PDF
    International audienceThe adsorption of Rb+, Cs+, Mn2+, Co2+ and Yb3+ onto the positively charged hen egg-white lysozyme (HEWL) has been investigated by solving 13 X-ray structures of HEWL crystallized with their chlorides and by applying electrospray ionization mass spectrometry (ESI-MS) first to dissolved protein crystals and then to the protein in buffered salt solutions. The number of bound cations follows the order Cs+ < Mn2+ ’ Co2+ < Yb3+ at 293 K. HEWL binds less Rb+ (qtot = 0.7) than Cs+ (qtot = 3.9) at 100 K. Crystal flash-cooling drastically increases the binding of Cs+, but poorly affects that of Yb3+, suggesting different interactions. The addition of glycerol increases the number of bound Yb3+ cations, but only slightly increases that of Rb+. HEWL titrations with the same chlorides, followed by ESI-MS analysis, show that only about 10% of HEWL binds Cs+ and about 40% binds 1–2 Yb3+ cations, while the highest binding reaches 60–70% for protein binding 1–3 Mn2+ or Co2+ cations. The binding sites identified by X-ray crystallography show that the monovalent Rb+ and Cs+ preferentially bind to carbonyl groups, whereas themultivalent Mn2+, Co2+ and Yb3+ interact with carboxylic groups. This work elucidates the basis of the effect of the Hofmeister cation series on protein solubility

    Fisetin disposition and metabolism in mice: Identification of geraldol as an active metabolite.: Fisetin disposition and metabolism in mice

    No full text
    International audienceAlthough the natural flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) has been recently identified as an anticancer agent with antiangiogenic properties in mice, its in vivo pharmacokinetics and metabolism are presently not characterized. Our purpose was to determine the pharmacokinetics and metabolism of fisetin in mice and determine the biological activity of a detected fisetin metabolite. After fisetin administration of an efficacious dose of 223 mg/kg i.p. in mice, the maximum fisetin concentration reached 2.5 μg/ml at 15 min and the plasma concentration declined biphasically with a rapid half-life of 0.09 h and a terminal half-life of 3.1h. Three metabolites were detected, one of which was a glucuronide of fisetin (M1), whereas another glucuronide (M2) was a glucuronide of a previously unknown fisetin metabolite (M3). HPLC-MS/MS analysis indicated that M3 was a methoxylated metabolite of fisetin (MW=300 Da). The UV spectrum of M3 was identical to that of fisetin and standard 3,4',7-trihydroxy-3'-methoxyflavone (geraldol). In addition, because M3 co-eluted with standard geraldol in 4 different chromatographic ternary gradient conditions, M3 was therefore assigned to geraldol. Of interest, this metabolite was shown to achieve higher concentrations than fisetin in Lewis lung tumors. We also compared the cytotoxic and antiangiogenic activities of fisetin and geraldol in vitro and it was found that the latter was more cytotoxic than the parent compound toward tumor cells, and that it could also inhibit endothelial cells migration and proliferation. In conclusion, these results suggest that fisetin metabolism plays an important role in its in vivo anticancer activities

    Identification and induction of cytochrome P450s involved in the metabolism of flavone-8-acetic acid in mice.: Identification of mouse Cyps involved in FAA metabolism

    No full text
    International audienceThe metabolism of flavone-8-acetic acid (FAA) has been hypothesized to be partly responsible for its potent anticancer activity in mice. The purpose of this study was to identify the mouse enzymes involved in FAA Phase I metabolism and evaluate their possible induction in vivo by FAA. Mouse microsomes metabolized FAA into 6 metabolites: 3',4'-dihydrodiol-FAA, 5,6-epoxy-FAA, 4'-OH-FAA, 3'-OH-FAA, 3',4'-epoxy-FAA and 6-OH-FAA. Using Cyp-specific inhibitors (furafylline, Cyp1a2; α-naphthoflavone, Cyp1b1; tranylcypromine, Cyp2b9; quercetin, Cyp2c29; quinidine, 2d9; diethyldithiocarbamate, Cyp2e1; ketoconazole, Cyp3a11), the formation of 5,6-epoxy-FAA was mainly attributed to Cyps 1a2, 1b1, 2b9, 2c29 and 2e1, whereas the 3',4'-epoxy-FAA was formed by Cyps 2b9 and 3a11. The 4'-OH-FAA was generated by Cyps 1a2, 1b1, 2b9 and 2e1, and the 6-OH-FAA was formed by Cyps 1b1 and 2c9. Using the epoxide scavenger N-acetyl cysteine, 4'-OH-FAA, 3'-OH-FAA and 6-OH-FAA were shown to derive partly from non enzymatic isomerisation of their corresponding epoxides. The specific epoxide hydrolase inhibitor elaidamide allowed the confirmation that 3',4'-dihydrodiol-FAA was formed via the epoxide hydrolase. FAA treatment in vivo in mice led to a significant increase in the hepatic expression of Cyp1a2 (1.9-fold), 2e1 (2.1-fold), 2b10 (3.2-fold), 2d9 (2.3-fold) and 3a11 (2.2-fold), as evaluated by qRT-PCR. In conclusion, several Cyps were shown to be involved in FAA metabolism, particularly Cyps 3a11 and 2b9 which were responsible for the formation of the principal metabolites (5,6-epoxy-FAA, 3',4'-epoxy-FAA), and that FAA could induce the expression of several Cyps after in vivo administration. The possible implication of these enzymes in the in vivo anticancer activity of FAA in mice is discussed

    On-resin cyclization of peptide ligands of the Vascular Endothelial Growth Factor Receptor 1 by copper(I)-catalyzed 1,3-dipolar azide–alkyne cycloaddition

    No full text
    International audienceCyclic peptides were obtained, on-resin, by the copper (I) catalysed 1,3-dipolar cycloaddition of azides and alkynes. The reaction led exclusively to the formation of the expected cyclomonomeric products which acted as ligands of the Vascular Endothelial Growth Factor receptor 1
    corecore