22 research outputs found

    Identification of Candidate Genes Downstream of TLR4 Signaling after Ozone Exposure in Mice: A Role for Heat-Shock Protein 70

    Get PDF
    Background: Toll-like receptor 4 (TLR4) is involved in ozone (O3)-induced pulmonary hyperpermeability and inflammation, although the downstream signaling events are unknown

    IL18 and IL18R1 polymorphisms, lung CT and fibrosis: A longitudinal study in coal miners.

    No full text
    It has been suggested that interleukin (IL)-18 plays a role in the development of inflammatory and fibrosing lung diseases. Associations of polymorphisms in the genes coding for IL-18 (IL18 /G-656T, C-607A, G-137C, T113G, C127T) and its receptor (IL18R1 /C-69T) with coal workers' pneumoconiosis (CWP) were studied in 200 miners who were examined in 1990, 1994 and 1999. Coal-dust exposure was assessed according to job history and ambient measures. The main health outcome was lung computed tomography (CT) score in 1990. Internal coherence was assessed by studying CT score in 1994, 4-yr change in CT score and CWP incidence and prevalence. CT score in 1990 was a good predictor of radiographic grade in 1999 and, therefore, an appropriate subclinical quantitative trait. The IL18 -137C allele was associated with lower CT score in 1990 and 1994 (1.24 versus 1.69 and 1.57 versus 2.46, respectively), slower progression of CT score between 1990 and 1994 and lower pneumoconiosis prevalence in 1999 relative to the G allele (0.33 versus 0.77 and 8.2 versus 19.6%, respectively). Smoking- or dust-adjustment, and stratification on IL18R1 genotype and adjustment for haplotype effects did not change the conclusions. In conclusion, the results of the present study suggest a role for IL18 in reducing the development of this fibrosing lung disease

    Association of CAT polymorphisms with catalase activity and exposure to environmental oxidative stimuli.

    No full text
    We tested the hypotheses that catalase activity is modified by CAT single nucleotide polymorphisms (SNPs) (-262;-844), and by their interactions with oxidant exposures (coal dusts, smoking), lymphotoxin alpha (LTA, NcoI) and tumor necrosis factor (TNF, -308) in 196 miners. Erythrocyte catalase, superoxide dismutase, and glutathione peroxidase activities were measured. The CAT -262 SNP was related to lower catalase activity (104, 87 and 72 k/g hemoglobin for CC, CT and TT, respectively, p < 0.0001). Regardless of CAT SNPs, the LTA NcoI but not the TNF-308 SNP was associated with catalase activity (p = 0.04 and p = 0.8). CAT -262 T carriers were less frequent in highly exposed miners (OR = 0.39 [0.20-0.78], p = 0.007). In CAT -262 T carriers only, catalase activity decreased with high dust exposure (p = 0.01). Haplotype analyses (combined CAT SNPs) confirm these results. Results show that CAT -262 and LTA NcoI SNPs, and interaction with coal dust exposure, influenced catalase activity

    Effect of TNF and LTA polymorphisms on biological markers of response to oxidative stimuli in coal miners: a model of gene-environment interaction. Tumour necrosis factor and lymphotoxin alpha.

    No full text
    INTRODUCTION: Interaction between genetic background and oxidative environmental stimuli in the pathogenesis of human lung disease has been largely unexplored. METHODS: A prospective epidemiological study was undertaken in 253 coal miners. Intermediate quantitative phenotypes of response to oxidant exposure, including erythrocyte glutathione peroxidase (GSH-Px) and catalase activities, were studied. Oxidant exposures studied were smoking habits and cumulative dust exposure assessed by job history and ambient measures. Disease phenotypes included subclinical computed tomography score at the first survey and x ray profusion grades twice, five years apart, to assess established coal workers' pneumoconiosis (CWP). Miners were genotyped for common functional polymorphisms in the gene for tumour necrosis factor alpha (TNF) and lymphotoxin alpha (LTA), two proinflammatory cytokines that have been implicated in the pathogenesis of chronic lung diseases. RESULTS: Regarding gene-environment interaction on intermediate phenotypes, results showed interaction of a promoter polymorphism at the -308 position in TNF with occupational exposure on erythrocyte GSH-Px activity with a significant association in those with high exposure (p=0.003), whereas no association was observed among those with low exposure (interaction p=0.06). Regarding gene intermediate phenotype interaction on clinical outcome, results showed an association of CWP prevalence with an NcoI polymorphism in LTA in those with low catalase activity (p=0.05), whereas no association was observed in those with high activity (interaction p=0.03). No other significant association was observed. CONCLUSION: The results suggest that interactions of genetic background with environmental exposure and intermediate response phenotypes are important components in the pathogenesis of CWP

    Polymorphisms in chemokine and chemokine receptor genes and the development of coal workers' pneumoconiosis.

    No full text
    Chemokines and their receptors are key regulators of inflammation and may participate in the lung fibrotic process. Associations of polymorphisms in CCL5 (G-403A) and its receptor CCR5 (Delta32), CCL2 (A-2578G) and CCR2 (V64I), and CX3CR1 V249I and T280M with coal worker's pneumoconiosis (CWP) were investigated in 209 miners examined in 1990, 1994 and 1999. Coal dust exposure was assessed by job history and ambient measures. The main health outcome was lung computed tomography (CT) score in 1990. Internal coherence was assessed by studying CT score in 1994, 4-year change in CT score, and CWP prevalence in 1999. CCR5 Delta32 carriers had significantly higher CT score in 1990 and 1994 (2.15 vs. 1.28, p=0.01; 3.04 vs. 1.80, p=0.04). The CX3CR1 I249 allele was significantly associated with lower 1990 CT score and lower progression in 4-year change in CT score in CCR5 Delta32 carriers only (p for interaction=0.03 and 0.02). CX3CR1 V249I was associated with lower 1999 CWP prevalence (16.7%, 13.2%, 0.0% for VV, VI and II); the effect was most evident in miners with high dust exposure (31.6%, 21.7%, 0.0%). Our findings indicate that chemokine receptors CCR5 and CX3CR1 may be involved in the development of pneumoconiosis
    corecore