78 research outputs found

    Microarray Analysis of PBMC after Plasmodium falciparum Infection: Molecular Insights into Disease Pathogenesis

    Get PDF
    Our laboratory’s previous microarray analysis of subjects with Plasmodium falciparum revealed up-regulation of Toll-like receptor, NF-kB, TNF-α, IFN-γ, IL-1β, p38 MAPK, and MHC molecules. We performed further time-course microarray analysis focusing on malaria pathogenesis by using peripheral leukocytes as a cellular model. We found up-regulation of coagulation-related genes (SERPINB2, thrombomodulin, thrombospondin), heat shock proteins, glycolytic enzymes, glucose transporters, and vacuolar H+-ATPases in acute febrile malaria. In early malaria, prior to detectable parasitemia, CD36 and ICAM1 were up-regulated. During acute malaria, a correlation was observed between IL-1ß and heat shock proteins, suggesting heat shock protein response may be in the febrile response induced by IL-1ß. CD163, a hemoglobin scavenger receptor, was up-regulated in acute malaria to potentially facilitate free hemoglobin up-take by peripheral leukocytes. In acute malaria, high MafB gene expression was negatively correlated with down-regulation of hemoglobin and platelet counts. Consistent with a down-regulation of hemoglobin expression, peripheral RBC counts tended to increase during the acute malaria. In our model, up-regulations of RBC and/or leucocyte binding mediators like CD36, ICAM1, thrombospondin, and thrombomodulin may contribute to the pathogenesis of cerebral malaria. Similarly, up-regulation of genes coding for glycolytic enzymes, glucose transporter and H+-ATPases may contribute to the hypoglycemia and metabolic acidosis frequently observed in seriously ill malaria patients. Overall gender effects on gene expression profiles between male and female subjects were not apparent, except that some hemoglobins were significantly down-regulated in male versus female; suggesting males may be more prone to the development of malaria associate anemia

    Identification of Candidate Genes Downstream of TLR4 Signaling after Ozone Exposure in Mice: A Role for Heat-Shock Protein 70

    Get PDF
    Background: Toll-like receptor 4 (TLR4) is involved in ozone (O3)-induced pulmonary hyperpermeability and inflammation, although the downstream signaling events are unknown

    Clinically relevant atovaquone-resistant human malaria parasites fail to transmit by mosquito.

    Get PDF
    Long-acting injectable medications, such as atovaquone, offer the prospect of a "chemical vaccine" for malaria, combining drug efficacy with vaccine durability. However, selection and transmission of drug-resistant parasites is of concern. Laboratory studies have indicated that atovaquone resistance disadvantages parasites in mosquitoes, but lack of data on clinically relevant Plasmodium falciparum has hampered integration of these variable findings into drug development decisions. Here we generate atovaquone-resistant parasites that differ from wild type parent by only a Y268S mutation in cytochrome b, a modification associated with atovaquone treatment failure in humans. Relative to wild type, Y268S parasites evidence multiple defects, most marked in their development in mosquitoes, whether from Southeast Asia (Anopheles stephensi) or Africa (An. gambiae). Growth of asexual Y268S P. falciparum in human red cells is impaired, but parasite loss in the mosquito is progressive, from reduced gametocyte exflagellation, to smaller number and size of oocysts, and finally to absence of sporozoites. The Y268S mutant fails to transmit from mosquitoes to mice engrafted with human liver cells and erythrocytes. The severe-to-lethal fitness cost of clinically relevant atovaquone resistance to P. falciparum in the mosquito substantially lessens the likelihood of its transmission in the field

    Wolbachia Infections in Anopheles gambiae Cells: Transcriptomic Characterization of a Novel Host-Symbiont Interaction

    Get PDF
    The endosymbiotic bacterium Wolbachia is being investigated as a potential control agent in several important vector insect species. Recent studies have shown that Wolbachia can protect the insect host against a wide variety of pathogens, resulting in reduced transmission of parasites and viruses. It has been proposed that compromised vector competence of Wolbachia-infected insects is due to up-regulation of the host innate immune system or metabolic competition. Anopheles mosquitoes, which transmit human malaria parasites, have never been found to harbor Wolbachia in nature. While transient somatic infections can be established in Anopheles, no stable artificially-transinfected Anopheles line has been developed despite numerous attempts. However, cultured Anopheles cells can be stably infected with multiple Wolbachia strains such as wAlbB from Aedes albopictus, wRi from Drosophila simulans and wMelPop from Drosophila melanogaster. Infected cell lines provide an amenable system to investigate Wolbachia-Anopheles interactions in the absence of an infected mosquito strain. We used Affymetrix GeneChip microarrays to investigate the effect of wAlbB and wRi infection on the transcriptome of cultured Anopheles Sua5B cells, and for a subset of genes used quantitative PCR to validate results in somatically-infected Anopheles mosquitoes. Wolbachia infection had a dramatic strain-specific effect on gene expression in this cell line, with almost 700 genes in total regulated representing a diverse array of functional classes. Very strikingly, infection resulted in a significant down-regulation of many immune, stress and detoxification-related transcripts. This is in stark contrast to the induction of immune genes observed in other insect hosts. We also identified genes that may be potentially involved in Wolbachia-induced reproductive and pathogenic phenotypes. Somatically-infected mosquitoes had similar responses to cultured cells. The data show that Wolbachia has a profound and unique effect on Anopheles gene expression in cultured cells, and has important implications for mechanistic understanding of Wolbachia-induced phenotypes and potential novel strategies to control malaria

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Arrival angles of teleseismic fundamental mode Rayleigh waves across the AlpArray

    Get PDF
    The dense AlpArray network allows studying seismic wave propagation with high spatial resolution. Here we introduce an array approach to measure arrival angles of teleseismic Rayleigh waves. The approach combines the advantages of phase correlation as in the two-station method with array beamforming to obtain the phase-velocity vector. 20 earthquakes from the first two years of the AlpArray project are selected, and spatial patterns of arrival-angle deviations across the AlpArray are shown in maps, depending on period and earthquake location. The cause of these intriguing spatial patterns is discussed. A simple wave-propagation modelling example using an isolated anomaly and a Gaussian beam solution suggests that much of the complexity can be explained as a result of wave interference after passing a structural anomaly along the wave paths. This indicates that arrival-angle information constitutes useful additional information on the Earth structure, beyond what is currently used in inversions

    Ambient-noise tomography of the wider Vienna Basin region

    Get PDF
    We present a new 3-D shear-velocity model for the top 30 km of the crust in the wider Vienna Basin region based on surface waves extracted from ambient-noise cross-correlations. We use continuous seismic records of 63 broad-band stations of the AlpArray project to retrieve interstation Green’s functions from ambient-noise cross-correlations in the period range from 5 to 25 s. From these Green’s functions, we measure Rayleigh group traveltimes, utilizing all four components of the cross-correlation tensor, which are associated with Rayleigh waves (ZZ, RR, RZ and ZR), to exploit multiple measurements per station pair. A set of selection criteria is applied to ensure that we use high-quality recordings of fundamental Rayleigh modes. We regionalize the interstation group velocities in a 5 km × 5 km grid with an average path density of ∼20 paths per cell. From the resulting group-velocity maps, we extract local 1-D dispersion curves for each cell and invert all cells independently to retrieve the crustal shear-velocity structure of the study area. The resulting model provides a previously unachieved lateral resolution of seismic velocities in the region of ∼15 km. As major features, we image the Vienna Basin and Little Hungarian Plain as low-velocity anomalies, and the Bohemian Massif with high velocities. The edges of these features are marked with prominent velocity contrasts correlated with faults, such as the Alpine Front and Vienna Basin transfer fault system. The observed structures correlate well with surface geology, gravitational anomalies and the few known crystalline basement depths from boreholes. For depths larger than those reached by boreholes, the new model allows new insight into the complex structure of the Vienna Basin and surrounding areas, including deep low-velocity zones, which we image with previously unachieved detail. This model may be used in the future to interpret the deeper structures and tectonic evolution of the wider Vienna Basin region, evaluate natural resources, model wave propagation and improve earthquake locations, among others
    • …
    corecore