11 research outputs found

    Goosecoid and HNF-3beta genetically interact to regulate neural tube patterning during mouse embryogenesis

    Get PDF
    The homeobox gene goosecoid (gsc) and the winged-helix gene Hepatic Nuclear Factor-3beta (HNF-3beta) are co-expressed in all three germ layers in the anterior primitive streak and at the rostral end of mouse embryos during gastrulation. In this paper, we have tested the possibility of functional synergism or redundancy between these two genes during embryogenesis by generating double-mutant mice for gsc and HNF-3beta. Double-mutant embryos of genotype gsc(-/-);HNF-3beta(+/-) show a new phenotype as early as embryonic days 8.75. Loss of Sonic hedgehog (Shh) and HNF-3beta expression was observed in the notochord and ventral neural tube of these embryos. These results indicate that gsc and HNF-3beta interact to regulate Shh expression and consequently dorsal-ventral patterning in the neural tube. In the forebrain of the mutant embryos, severe growth defects and absence of optic vesicles could involve loss of expression of fibroblast growth factor-8, in addition to Shh. Our results also suggest that interaction between gsc and HNF-3beta regulates other signalling molecules required for proper development of the foregut, branchial arches and heart

    The Caenorhabditis elegans vab-10 spectraplakin isoforms protect the epidermis against internal and external forces

    Get PDF
    Morphogenesis of the Caenorhabditis elegans embryo is driven by actin microfilaments in the epidermis and by sarcomeres in body wall muscles. Both tissues are mechanically coupled, most likely through specialized attachment structures called fibrous organelles (FOs) that connect muscles to the cuticle across the epidermis. Here, we report the identification of new mutations in a gene known as vab-10, which lead to severe morphogenesis defects, and show that vab-10 corresponds to the C. elegans spectraplakin locus. Our analysis of vab-10 reveals novel insights into the role of this plakin subfamily. vab-10 generates isoforms related either to plectin (termed VAB-10A) or to microtubule actin cross-linking factor plakins (termed VAB-10B). Using specific antibodies and mutations, we show that VAB-10A and VAB-10B have distinct distributions and functions in the epidermis. Loss of VAB-10A impairs the integrity of FOs, leading to epidermal detachment from the cuticle and muscles, hence demonstrating that FOs are functionally and molecularly related to hemidesmosomes. We suggest that this isoform protects against forces external to the epidermis. In contrast, lack of VAB-10B leads to increased epidermal thickness during embryonic morphogenesis when epidermal cells change shape. We suggest that this isoform protects cells against tension that builds up within the epidermis

    CHE-14, a protein with a sterol-sensing domain, is required for apical sorting in C. elegans ectodermal epithelial cells

    Get PDF
    BACKGROUND: Polarised trafficking of proteins is critical for normal expression of the epithelial phenotype, but its genetic control is not understood. The regulatory gene lin-26 is essential for normal epithelial differentiation in the nematode Caenorhabditis elegans. To identify potential effectors of lin-26, we characterised mutations that result in lin-26-like phenotypes. Here, we report the phenotypic and molecular analysis of one such mutant line, che-14. RESULTS: Mutations in che-14 resulted in several partially penetrant phenotypes affecting the function of most epithelial or epithelial-like cells of the ectoderm, including the hypodermis, excretory canal, vulva, rectum and several support cells. The defects were generally linked to the accumulation of vesicles or amorphous material near the apical surface, suggesting that secretion was defective. The CHE-14 protein showed similarity to proteins containing sterol-sensing domains, including Dispatched, Patched and NPC1. A fusion protein between full-length CHE-14 and the green fluorescent protein became localised to the apical surface of epithelial cells that require che-14 function. Deletions that removed the predicted transmembrane domains or extracellular loops of CHE-14 abolished apical localisation and function of the protein. CONCLUSIONS: We propose that CHE-14 is involved in a novel secretory pathway dedicated to the exocytosis of lipid-modified proteins at the apical surface of certain epithelial cells. Our data raise the possibility that the primordial function of proteins containing a sterol-sensing domain is to control vesicle trafficking: CHE-14 and Dispatched in exocytosis, Patched and NPC1 in endocytosis

    Impairing follicle-stimulating hormone (FSH) signaling in vivo: Targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance

    No full text
    Pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone stimulate the gonads by regulating germ cell proliferation and differentiation. FSH receptors (FSH-Rs) are localized to testicular Sertoli cells and ovarian granulosa cells and are coupled to activation of the adenylyl cyclase and other signaling pathways. Activation of FSH-Rs is considered essential for folliculogenesis in the female and spermatogenesis in the male. We have generated mice lacking FSH-R by homologous recombination. FSH-R-deficient males are fertile but display small testes and partial spermatogenic failure. Thus, although FSH signaling is not essential for initiating spermatogenesis, it appears to be required for adequate viability and motility of the sperms. FSH-R-deficient females display thin uteri and small ovaries and are sterile because of a block in folliculogenesis before antral follicle formation. Although the expression of marker genes is only moderately altered in FSH-R −/− mice, drastic sex-specific changes are observed in the levels of various hormones. The anterior lobe of the pituitary gland in females is enlarged and reveals a larger number of FSH- and thyroid-stimulating hormone (TSH)-positive cells. The phenotype of FSH-R −/− mice is reminiscent of human hypergonadotropic ovarian dysgenesis and infertility

    Idebenone delays the onset of cardiac functional alteration without correction of Fe-S enzymes deficit in a mouse model for Friedreich ataxia

    No full text
    Friedreich ataxia (FRDA), a progressive neurodegenerative disorder associated with cardiomyopathy, is caused by severely reduced frataxin, a mitochondrial protein involved in Fe-S cluster assembly. We have recently generated mouse models that reproduce important progressive pathological and biochemical features of the human disease. Our frataxin-deficient mouse models initially demonstrate time-dependent intramitochondrial iron accumulation, which occurs after onset of the pathology and after inactivation of the Fe-S dependent enzymes. Here, we report a more detailed pathophysiological characterization of our mouse model with isolated cardiac disease by echocardiographic, biochemical and histological studies and its use for placebo-controlled therapeutic trial with Idebenone. The Fe-S enzyme deficiency occurs at 4 weeks of age, prior to cardiac dilatation and concomitant development of left ventricular hypertrophy, while the mitochondrial iron accumulation occurs at a terminal stage. From 7 weeks onward, Fe-S enzyme activities are strongly decreased and are associated with lower levels of oxidative stress markers, as a consequence of reduced respiratory chain activity. Furthermore, we demonstrate that the antioxidant Idebenone delays the cardiac disease onset, progression and death of frataxin deficient animals by 1 week, but does not correct the Fe-S enzyme deficiency. Our results support the view that frataxin is a necessary, albeit non-essential, component of the Fe-S cluster biogenesis, and indicate that Idebenone acts downstream of the primary Fe-S enzyme deficit. Furthermore, our results demonstrate that Idebenone is cardioprotective even in the context of a complete lack of frataxin, which further supports its utilization for the treatment of FRDA

    Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia

    No full text
    Friedreich ataxia (FRDA), the most common recessive ataxia, is characterized by degeneration of the large sensory neurons of the spinal cord and cardiomyopathy. It is caused by severely reduced levels of frataxin, a mitochondrial protein involved in iron-sulfur cluster (ISC) biosynthesis. Through a spatiotemporally controlled conditional gene-targeting approach, we have generated two mouse models for FRDA that specifically develop progressive mixed cerebellar and sensory ataxia, the most prominent neurological features of FRDA. Histological studies showed both spinal cord and dorsal root ganglia (DRG) anomalies with absence of motor neuropathy, a hallmark of the human disease. In addition, one line revealed a cerebellar granule cell loss, whereas both lines had Purkinje cell arborization defects. These lines represent the first FRDA models with a slowly progressive neurological degeneration. We identified an autophagic process as the causative pathological mechanism in the DRG, leading to removal of mitochondrial debris and apparition of lipofuscin deposits. These mice therefore represent excellent models for FRDA to unravel the pathological cascade and to test compounds that interfere with the degenerative process
    corecore