34 research outputs found

    A Comparison of Different Matrices for the Laboratory Diagnosis of the Epizootic American Foulbrood of Honey Bees

    Get PDF
    American Foulbrood (AFB) of honey bees caused by the spore-forming bacterium Paenibacillus larvae is a notifiable epizootic in most countries. Authorities often consider a rigorous eradication policy the only sustainable control measure. However, early diagnosis of infected but not yet diseased colonies opens up the possibility of ridding these colonies of P. larvae spores by the shook swarm method, thus preventing colony destruction by AFB or official control orders. Therefore, surveillance of bee colonies for P. larvae infection followed by appropriate sanitary measures is a very important intervention to control AFB. For the detection of P. larvae spores in infected colonies, samples of brood comb honey, adult bees, or hive debris are commonly used. We here present our results from a comparative study on the suitability of these matrices in reliably and correctly detecting P. larvae spores contained in these matrices. Based on the sensitivity and limit of detection of P. larvae spores in samples from hive debris, adult bees, and brood comb honey, we conclude that the latter two are equally well-suited for AFB surveillance programs. Hive debris samples should only be used when it is not possible to collect honey or adult bee samples from brood combs

    Paenibacillus larvae Chitin-Degrading Protein PlCBP49 Is a Key Virulence Factor in American Foulbrood of Honey Bees

    Get PDF
    Paenibacillus larvae, the etiological agent of the globally occurring epizootic American Foulbrood (AFB) of honey bees, causes intestinal infections in honey bee larvae which develop into systemic infections inevitably leading to larval death. Massive brood mortality might eventually lead to collapse of the entire colony. Molecular mechanisms of host-microbe interactions in this system and of differences in virulence between P. larvae genotypes are poorly understood. Recently, it was demonstrated that the degradation of the peritrophic matrix lining the midgut epithelium is a key step in pathogenesis of P. larvae infections. Here, we present the isolation and identification of PlCBP49, a modular, chitin-degrading protein of P. larvae and demonstrate that this enzyme is crucial for the degradation of the larval peritrophic matrix during infection. PlCBP49 contains a module belonging to the auxiliary activity 10 (AA10, formerly CBM33) family of lytic polysaccharide monooxygenases (LPMOs) which are able to degrade recalcitrant polysaccharides. Using chitin-affinity purified PlCBP49, we provide evidence that PlCBP49 degrades chitin via a metal ion-dependent, oxidative mechanism, as already described for members of the AA10 family. Using P. larvae mutants lacking PlCBP49 expression, we analyzed in vivo biological functions of PlCBP49. In the absence of PlCBP49 expression, peritrophic matrix degradation was markedly reduced and P. larvae virulence was nearly abolished. This indicated that PlCBP49 is a key virulence factor for the species P. larvae. The identification of the functional role of PlCBP49 in AFB pathogenesis broadens our understanding of this important family of chitin-binding and -degrading proteins, especially in those bacteria that can also act as entomopathogens

    Genomic Potential and Virulence Mechanisms of Paenibacillus larvae

    Get PDF
    Paenibacillus larvae, a Gram positive bacterial pathogen, causes American Foulbrood (AFB), which is the most serious infectious disease of honey bees. In order to investigate the genomic potential of P. larvae, two strains belonging to two different genotypes were sequenced and used for comparative genome analysis. The complete genome sequence of P. larvae strain DSM 25430 (genotype ERIC II) consisted of 4,056,006 bp and harbored 3,928 predicted protein-encoding genes. The draft genome sequence of P. larvae strain DSM 25719 (genotype ERIC I) comprised 4,579,589 bp and contained 4,868 protein- encoding genes. Both strains harbored a 9.7 kb plasmid and encoded a large number of virulence-associated proteins such as toxins and collagenases. In addition, genes encoding large multimodular enzymes producing nonribosomally peptides or polyketides were identified. In the genome of strain DSM 25719 seven toxin associated loci were identified and analyzed. Five of them encoded putatively functional toxins. The genome of strain DSM 25430 harbored several toxin loci that showed similarity to corresponding loci in the genome of strain DSM 25719, but were non-functional due to point mutations or disruption by transposases. Although both strains cause AFB, significant differences between the genomes were observed including genome size, number and composition of transposases, insertion elements, predicted phage regions, and strain-specific island-like regions. Transposases, integrases and recombinases are important drivers for genome plasticity. A total of 390 and 273 mobile elements were found in strain DSM 25430 and strain DSM 25719, respectively. Comparative genomics of both strains revealed acquisition of virulence factors by horizontal gene transfer and provided insights into evolution and pathogenicity

    Métodos para la investigación de la loque americana

    Get PDF
    American foulbrood is one of the most devastating diseases of the honey bee. It is caused by the spore-forming, Gram-positive rod-shaped bacterium Paenibacillus larvae. The recent updated genome assembly and annotation for this pathogen now permits in-depth molecular studies. In this paper, selected techniques and protocols for American foulbrood research are provided, mostly in a recipe-like format that permits easy implementation in the laboratory. Topics covered include: working with Paenibacillus larvae, basic microbiological techniques, experimental infection, and “’omics” and other sophisticated techniques. Further, this chapter covers other technical information including biosafety measures to guarantee the safe handling of this pathogen.La loque americana es una de las enfermedades más devastadoras de la abeja melífera, causada por el bacilo, formador de esporas Grampositivo Paenibacillus larvae. El reciente ensamblaje y anotación del genoma de este patógeno permite actualmente la realización de profundos estudios moleculares. En este trabajo, se proporcionan técnicas y protocolos seleccionados para la investigación de la loque americana, principalmente bajo la forma de protocolos de trabajo con una estructura similar al de las recetas, para facilitar su implementación en el laboratorio. Los temas desarrollados incluyen: el trabajo con Paenibacillus larvae, técnicas básicas microbiológicas, la infección experimental, y "'ómicas" y otras técnicas sofisticadas. Además, este capítulo abarca otro tipo de información técnica, incluyendo medidas de bioseguridad para garantizar la seguridad en el manejo de este patógeno.Trabajo publicado en Dietemann, V.; Ellis, J. D.; Neumann, P. (eds.) The Coloss Beebook, Volume II: standard methods for Apis mellifera pest and pathogen research. Journal of Apicultural Research, 52(1).Facultad de Ciencias Agrarias y Forestale

    Special Issue: Honey Bee Pathogens and Parasites

    No full text
    Honey bees are important pollinators of agricultural crops and despite the reports about elevated local colony losses over the last few decades [...

    The Buzz about ADP-Ribosylation Toxins from Paenibacillus larvae, the Causative Agent of American Foulbrood in Honey Bees

    No full text
    The Gram-positive, spore-forming bacterium Paenibacillus larvae is the etiological agent of American Foulbrood, a highly contagious and often fatal honey bee brood disease. The species P. larvae comprises five so-called ERIC-genotypes which differ in virulence and pathogenesis strategies. In the past two decades, the identification and characterization of several P. larvae virulence factors have led to considerable progress in understanding the molecular basis of pathogen-host-interactions during P. larvae infections. Among these virulence factors are three ADP-ribosylating AB-toxins, Plx1, Plx2, and C3larvin. Plx1 is a phage-born toxin highly homologous to the pierisin-like AB-toxins expressed by the whites-and-yellows family Pieridae (Lepidoptera, Insecta) and to scabin expressed by the plant pathogen Streptomyces scabiei. These toxins ADP-ribosylate DNA and thus induce apoptosis. While the presumed cellular target of Plx1 still awaits final experimental proof, the classification of the A subunits of the binary AB-toxins Plx2 and C3larvin as typical C3-like toxins, which ADP-ribosylate Rho-proteins, has been confirmed experimentally. Normally, C3-exoenzymes do not occur together with a B subunit partner, but as single domain toxins. Interestingly, the B subunits of the two P. larvae C3-like toxins are homologous to the B-subunits of C2-like toxins with striking structural similarity to the PA-63 protomer of Bacillus anthracis

    Identification and functional analysis of the S-layer protein SplA of Paenibacillus larvae, the causative agent of American Foulbrood of honey bees.

    Get PDF
    The gram-positive, spore-forming bacterium Paenibacillus larvae is the etiological agent of American Foulbrood (AFB), a globally occurring, deathly epizootic of honey bee brood. AFB outbreaks are predominantly caused by two genotypes of P. larvae, ERIC I and ERIC II, with P. larvae ERIC II being the more virulent genotype on larval level. Recently, comparative proteome analyses have revealed that P. larvae ERIC II but not ERIC I might harbour a functional S-layer protein, named SplA. We here determine the genomic sequence of splA in both genotypes and demonstrate by in vitro self-assembly studies of recombinant and purified SplA protein in combination with electron-microscopy that SplA is a true S-layer protein self-assembling into a square 2D lattice. The existence of a functional S-layer protein is novel for this bacterial species. For elucidating the biological function of P. larvae SplA, a genetic system for disruption of gene expression in this important honey bee pathogen was developed. Subsequent analyses of in vivo biological functions of SplA were based on comparing a wild-type strain of P. larvae ERIC II with the newly constructed splA-knockout mutant of this strain. Differences in cell and colony morphology suggest that SplA is a shape-determining factor. Marked differences between P. larvae ERIC II wild-type and mutant cells with regard to (i) adhesion to primary pupal midgut cells and (ii) larval mortality as measured in exposure bioassays corroborate the assumption that the S-layer of P. larvae ERIC II is an important virulence factor. Since SplA is the first functionally proven virulence factor for this species, our data extend the knowledge of the molecular differences between these two genotypes of P. larvae and contribute to explaining the observed differences in virulence. These results present an immense advancement in our understanding of P. larvae pathogenesis

    Primers used for sequence analysis of <i>cbp</i>49, screening of <i>P. larvae</i> isolates for <i>cbp</i>49, and construction of gene knockouts in <i>P. larvae</i> ATCC9545 (ERIC I) and DSM25430 (ERIC II).

    No full text
    <p>Primers used for sequence analysis of <i>cbp</i>49, screening of <i>P. larvae</i> isolates for <i>cbp</i>49, and construction of gene knockouts in <i>P. larvae</i> ATCC9545 (ERIC I) and DSM25430 (ERIC II).</p

    Identification of <i>Pl</i>CBP49 as a novel member of the AA10 (formerly CBM33) family of LPMOs.

    No full text
    <p>(A) Peptide sequences obtained from sequencing <i>Pl</i>CBP49<sub>I</sub> from ATCC9545 and <i>Pl</i>CBP49<sub>II</sub> from DSM25430 are shown in comparison to the corresponding sequences of <i>S. marcescens</i> CBP21 (GenBank acc. no.: BAA31569). (B) <i>In silico</i>-translation of the putative <i>P. larvae Pl</i>CBP49 ORF followed by domain analysis revealed the presence of an N-terminal CBM33 (AA10) module, two FN-III-repeats and an additional small, C-terminal chitin-binding domain (CBM 5/12). (C) Amino acid alignment of the AA10 domain of <i>P. larvae Pl</i>CBP49 with three other members of the AA10 family of LPMOs (CBP21, GenBank acc. no.: BAA31569; <i>Ef</i>CBM33A, GenBank acc. no.: AAO80225; CBD3, Genbank acc. no.: EEM95937) revealed the existence of a signal peptide (framed) and several conserved amino acids (arrows and asterisks) which are described to be involved in chitin-binding and –degradation.</p
    corecore