13 research outputs found

    Predictive modelling of a novel anti-adhesion therapy to combat bacterial colonisation of burn wounds

    Get PDF
    As the development of new classes of antibiotics slows, bacterial resistance to existing antibiotics is becoming an increasing problem. A potential solution is to develop treatment strategies with an alternative mode of action. We consider one such strategy: anti-adhesion therapy. Whereas antibiotics act directly upon bacteria, either killing them or inhibiting their growth, anti-adhesion therapy impedes the binding of bacteria to host cells. This prevents bacteria from deploying their arsenal of virulence mechanisms, while simultaneously rendering them more susceptible to natural and artificial clearance. In this paper, we consider a particular form of anti-adhesion therapy, involving biomimetic multivalent adhesion molecule 7 coupled polystyrene microbeads, which competitively inhibit the binding of bacteria to host cells. We develop a mathematical model, formulated as a system of ordinary differential equations, to describe inhibitor treatment of a Pseudomonas aeruginosa burn wound infection in the rat. Benchmarking our model against in vivo data from an ongoing experimental programme, we use the model to explain bacteria population dynamics and to predict the efficacy of a range of treatment strategies, with the aim of improving treatment outcome. The model consists of two physical compartments: the host cells and the exudate. It is found that, when effective in reducing the bacterial burden, inhibitor treatment operates both by preventing bacteria from binding to the host cells and by reducing the flux of daughter cells from the host cells into the exudate. Our model predicts that inhibitor treatment cannot eliminate the bacterial burden when used in isolation; however, when combined with regular or continuous debridement of the exudate, elimination is theoretically possible. Lastly, we present ways to improve therapeutic efficacy, as predicted by our mathematical model

    Pseudomonas aeruginosa Infection of Zebrafish Involves both Host and Pathogen Determinants▿

    Get PDF
    Zebrafish (Danio rerio) have a number of strengths as a host model for infection, including genetic tractability, a vertebrate immune system similar to that of mammals, ease and scale of laboratory handling, which allows analysis with reasonable throughput, and transparency, which facilitates visualization of the infection. With these advantages in mind, we examined whether zebrafish could be used to study Pseudomonas aeruginosa pathogenesis and found that infection of zebrafish embryos with live P. aeruginosa (PA14 or PAO1) by microinjection results in embryonic death, unlike infection with Escherichia coli or heat-killed P. aeruginosa, which has no effect. Similar to studies with mice, P. aeruginosa mutants deficient in type three secretion (pscD) or quorum sensing (lasR and mvfR) are attenuated in zebrafish embryos infected at 50 h postfertilization (hpf), a developmental stage when both macrophages and neutrophils are present. In contrast, embryos infected at 28 hpf, when only macrophages are initially present, succumb to lethal challenge with far fewer P. aeruginosa cells than those required for embryos infected at 50 hpf, are susceptible to infection with lasR and pscD deletion mutants, and are moderately resistant to infection with an mvfR mutant. Finally, we show that we can control the outcome of infection through the use of morpholinos, which allow us to shift immune cell numbers, or small molecules (antibiotics), which rescue embryos from lethal challenge. Thus, zebrafish are a novel host model that is well suited for studying the interactions among individual pathogenic functions of P. aeruginosa, the role of individual components of host immune defense, and small-molecule modulators of infection

    Genetic factors affecting storage and utilization of lipids during dormancy in Mycobacterium tuberculosis

    No full text
    ABSTRACTMycobacterium tuberculosis (Mtb) can adopt a non-growing dormant state during infection that may be critical to both active and latent tuberculosis. During dormancy, Mtb is widely tolerant toward antibiotics, a significant obstacle in current anti-tubercular drug regimens, and retains the ability to persist in its environment. We aimed to identify novel mechanisms that permit Mtb to survive dormancy in an in vitro carbon starvation model using transposon insertion sequencing and gene expression analysis. We identified a previously uncharacterized component of the lipid transport machinery, omamC, which was upregulated and required for survival during carbon starvation. We show that OmamC plays a role both in increasing fatty acid stores during growth in rich media and enhancing fatty acid utilization during starvation. Besides its involvement in lipid metabolism, OmamC levels affected the expression of the anti-anti-sigma factor rv0516c and other genes to improve Mtb survival during carbon starvation and increase its tolerance toward rifampicin, a first-line drug effective against non-growing Mtb. Importantly, we show that Mtb can be eradicated during carbon starvation, in an OmamC-dependent manner, by inhibiting lipid metabolism with the lipase inhibitor tetrahydrolipstatin. This work casts new light into the survival processes of non-replicating, drug-tolerant Mtb by identifying new proteins involved in lipid metabolism required for the survival of dormant bacteria and exposing a potential vulnerability that could be exploited for antibiotic discovery.IMPORTANCETuberculosis is a global threat, with ~10 million yearly active cases. Many more people, however, live with “latent” infection, where Mycobacterium tuberculosis survives in a non-replicative form. When latent bacteria activate and regrow, they elicit immune responses and result in significant host damage. Replicating and non-growing bacilli can co-exist; however, non-growing bacteria are considerably less sensitive to antibiotics, thus complicating treatment by necessitating long treatment durations. Here, we sought to identify genes important for bacterial survival in this non-growing state using a carbon starvation model. We found that a previously uncharacterized gene, omamC, is involved in storing and utilizing fatty acids as bacteria transition between these two states. Importantly, inhibiting lipid metabolism using a lipase inhibitor eradicates non-growing bacteria. Thus, targeting lipid metabolism may be a viable strategy for treating the non-growing population in strategies to shorten treatment durations of tuberculosis

    Generation of mouse-zebrafish hematopoietic tissue chimeric embryos for hematopoiesis and host-pathogen interaction studies

    No full text
    © 2018. Published by The Company of Biologists Ltd. Xenografts of the hematopoietic system are extremely useful as disease models and for translational research. Zebrafish xenografts have been widely used to monitor blood cancer cell dissemination and homing due to the optical clarity of embryos and larvae, which allow unrestricted in vivo visualization of migratory events. Here, we have developed a xenotransplantation technique that transiently generates hundreds of hematopoietic tissue chimeric embryos by transplanting murine bone marrow cells into zebrafish blastulae. In contrast to previous methods, this procedure allows mammalian cell integration into the fish developmental hematopoietic program, which results in chimeric animals containing distinct phenotypes of murine blood cells in both circulation and the hematopoietic niche. Murine cells in chimeric animals express antigens related to (i) hematopoietic stem and progenitor cells, (ii) active cell proliferation and (iii) myelo

    Solid-phase polarization matrixes for dynamic nuclear polarization from homogeneously distributed radicals in mesostructured hybrid silica materials.

    No full text
    International audienceMesoporous hybrid silica-organic materials containing homogeneously distributed stable mono- or dinitroxide radicals covalently bound to the silica surface were developed as polarization matrixes for solid-state dynamic nuclear polarization (DNP) NMR experiments. For TEMPO-containing materials impregnated with water or 1,1,2,2-tetrachloroethane, enhancement factors of up to 36 were obtained at ∼100 K and 9.4 T without the need for a glass-forming additive. We show that the homogeneous radical distribution and the subtle balance between the concentration of radical in the material and the fraction of radicals at a sufficient inter-radical distance to promote the cross-effect are the main determinants for the DNP enhancements we obtain. The material, as well as an analogue containing the poorly soluble biradical bTUrea, is used as a polarizing matrix for DNP NMR experiments of solutions containing alanine and pyruvic acid. The analyte is separated from the polarization matrix by simple filtration
    corecore