639 research outputs found

    An Overview of the TROPICS NASA Earth Venture Mission

    Get PDF
    The Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission was selected by NASA as part of the Earth Venture-Instrument (EVI-3) program. The overarching goal for TROPICS is to provide nearly all-weather observations of 3D temperature and humidity, as well as cloud ice and precipitation horizontal structure, at high temporal resolution to conduct high-value science investigations of tropical cyclones. TROPICS will provide rapid-refresh microwave measurements (median refresh rate better than 60 min for the baseline mission) which can be used to observe the thermodynamics of the troposphere and precipitation structure for storm systems at the mesoscale and synoptic scale over the entire storm life cycle. TROPICS comprises six Cube-Sats in three low-Earth orbital planes. Each CubeSat will host a high-performance radiometer to provide temperature profiles using seven channels near the 118.75 GHz oxygen absorption line, water vapour profiles using three channels near the 183 GHz water vapour absorption line, imagery in a single channel near 90 GHz for precipitation measurements (when combined with higher-resolution water vapour channels), and a single channel near 205 GHz which is more sensitive to precipitation-sized ice particles. This observing system offers an unprecedented combination of horizontal and temporal resolution to measure environmental and inner-core conditions for tropical cyclones on a nearly global scale and is a major leap forward in the temporal resolution of several key parameters needed for assimilation into advanced data assimilation systems capable of utilizing rapid-update radiance or retrieval data.Launch readiness is currently projected for late 2019

    Corticosteroids for severe sepsis: an evidence-based guide for physicians

    Get PDF
    Septic shock is characterized by uncontrolled systemic inflammation that contributes to the progression of organ failures and eventually death. There is now ample evidence that the inability of the host to mount an appropriate hypothalamic-pituitary and adrenal axis response plays a major in overwhelming systemic inflammation during infections. Proinflammatory mediators released in the inflamed sites oppose to the anti-inflammatory response, an effect that may be reversed by exogenous corticosteroids. With sepsis, via nongenomic and genomic effects, corticosteroids restore cardiovascular homeostasis, terminate systemic and tissue inflammation, restore organ function, and prevent death. These effects of corticosteroids have been consistently found in animal studies and in most recent frequentist and Bayesian meta-analyses. Corticosteroids should be initiated only in patients with sepsis who require 0.5 ÎĽg/kg per minute or more of norepinephrine and should be continued for 5 to 7 days except in patients with poor hemodynamic response after 2 days of corticosteroids and with a cortisol increment of more than 250 nmol/L after a standard adrenocorticotropin hormone (ACTH) test. Hydrocortisone should be given at a daily dose of 200 mg and preferably combined to enteral fludrocortisone at a dose of 50 ÎĽg. Blood glucose levels should be kept below 150 mg/dL

    Overview of the NASA TROPICS CubeSat Constellation Mission

    Get PDF
    Recent technology advances in miniature microwave radiometers that can be hosted on very small satellites has made possible a new class of affordable constellation missions that provide very high revisit rates of tropical cyclones and other severe weather. The Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission was selected by NASA as part of the Earth VentureInstrument (EVI-3) program and is now in development with planned launch readiness in late 2019. The overarching goal for TROPICS is to provide nearly all-weather observations of 3-D temperature and humidity, as well as cloud ice and precipitation horizontal structure, at high temporal resolution to conduct high-value science investigations of tropical cyclones (TCs). TROPICS will provide rapid-refresh microwave measurements (median refresh rate better than 60 minutes for the baseline mission) over the tropics that can be used to observe the thermodynamics of the troposphere and precipitation structure for storm systems at the mesoscale and synoptic scale over the entire storm lifecycle. TROPICS will comprise a constellation of at least six CubeSats in three low-Earth orbital planes. Each CubeSat will host a high performance radiometer to provide temperature profiles using seven channels near the 118.75 GHz oxygen absorption line, water vapor profiles using three channels near the 183 GHz water vapor absorption line, imagery in a single channel near 90 GHz for precipitation measurements (when combined with higher resolution water vapor channels), and a single channel at 205 GHz that is more sensitive to precipitation-sized ice particles and low-level moisture. This observing system offers an unprecedented combination of horizontal and temporal resolution in the microwave spectrum to measure environmental and inner-core conditions for TCs on a nearly global scale and is a major leap forward in the temporal resolution of several key parameters needed for assimilation into advanced data assimilation systems capable of utilizing rapid-update radiance or retrieval data. Here, we provide an overview of the mission and an update on current status, with a focus on unique characteristics of the Cubesat system, recent performance simulations on a range of observables to be provided by the constellation, and a summary of science applications

    Overview of the NASA TROPICS CubeSat Constellation Mission

    Get PDF
    Recent technology advances in miniature microwave radiometers that can be hosted on very small satellites has made possible a new class of affordable constellation missions that provide very high revisit rates of tropical cyclones and other severe weather. The Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission was selected by NASA as part of the Earth Venture-Instrument (EVI-3)program and is now in development with planned launch readiness in late 2019. The overarching goal for TROPICS is to provide nearly all-weather observations of 3-D temperature and humidity, as well as cloud ice and precipitation horizontal structure, at high temporal resolution to conduct high-value science investigations of tropical cyclones (TCs). TROPICS will provide rapid-refresh microwave measurements (median refresh rate better than 60 minutes for the baseline mission) over the tropics that can be used to observe the thermodynamics of the troposphere and precipitation structure for storm systems at the mesoscale and synoptic scale over the entire storm life cycle. TROPICS will comprise a constellation of at least six CubeSats in three low-Earth orbital planes. Each CubeSat will host a high performance radiometer to provide temperature profiles using seven channels near the 118.75 GHz (gigahertz) oxygen absorption line, water vapor profiles using three channels near the 183 GHz water vapor absorption line, imagery in a single channel near 90 GHz for precipitation measurements (when combined with higher resolution water vapor channels), and a single channel at 205 GHz that is more sensitive to precipitation-sized ice particles and low-level moisture. This observing system offers an unprecedented combination of horizontal and temporal resolution in the microwave spectrum to measure environmental and inner-core conditions for TCs on a nearly global scale and is a major leap forward in the temporal resolution of several key parameters needed for assimilation into advanced data assimilation systems capable of utilizing rapid-update radiance or retrieval data. Here, we provide an overview of the mission and an update on current status,with a focus on unique characteristics of the Cubesat system, recent performance simulations on a range of observables to be provided by the constellation, and a summary of science applications

    Corticotherapy for traumatic brain-injured Patients - The Corti-TC trial: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traumatic brain injury (TBI) is a main cause of severe prolonged disability of young patients. Hospital acquired pneumonia (HAP) add to the morbidity and mortality of traumatic brain-injured patients. In one study, hydrocortisone for treatment of traumatic-induced corticosteroid insufficiency (CI) in multiple injured patients has prevented HAP, particularly in the sub-group of patients with severe TBI. Fludrocortisone is recommended in severe brain-injured patients suffering from acute subarachnoid hemorrhage. Whether an association of hydrocortisone with fludrocortisone protects from HAP and improves neurological recovery is uncertain. The aim of the current study is to compare corticotherapy to placebo for TBI patients with CI.</p> <p>Methods</p> <p>The CORTI-TC (Corticotherapy in traumatic brain-injured patients) trial is a multicenter, randomized, placebo controlled, double-blind, two-arms study. Three hundred and seventy six patients hospitalized in Intensive Care Unit with a severe traumatic brain injury (Glasgow Coma Scale ≤ 8) are randomized in the first 24 hours following trauma to hydrocortisone (200 mg.day<sup>-1 </sup>for 7 days, 100 mg on days 8-9 and 50 mg on day-10) with fludrocortisone (50 μg for 10 days) or double placebo. The treatment is stopped if patients have an appropriate adrenal response. The primary endpoint is HAP on day-28. The endpoint of the ancillary study is the neurological status on 6 and 12 months.</p> <p>Discussion</p> <p>The CORTI-TC trial is the first randomized controlled trial powered to investigate whether hydrocortisone with fludrocortisone in TBI patients with CI prevent HAP and improve long term recovery.</p> <p>Trial registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT01093261">NCT01093261</a></p

    Serum macrophage migration inhibitory factor reflects adrenal function in the hypothalamo-pituitary-adrenal axis of septic patients: an observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The hypothalamo-pituitary-adrenal (HPA) axis modulates the inflammatory response during sepsis. Macrophage migration inhibitory factor (MIF), which counteracts the anti-inflammatory activity of glucocorticoid (GC), is one of the mediators of the development of inflammation. An inflammatory imbalance involving GC and MIF might be the cause or result of adrenal insufficiency. Our objective was to clarify the relationship between serum MIF and adrenal function in the HPA axis of sepsis patients using the adrenocorticotropic hormone (ACTH) stimulation test.</p> <p>Methods</p> <p>An observational study was performed in a university intensive care unit over a two-year period. Of 64 consecutive sepsis patients, 41 were enrolled. The enrolled patients underwent an ACTH stimulation test within 24 h of the diagnosis of severe sepsis or septic shock. Clinical and laboratory parameters, including serum MIF and cortisol, were measured.</p> <p>Results</p> <p>Based on their responses to the ACTH stimulation test, the patients were divided into a normal adrenal response (NAR) group (n = 22) and an adrenal insufficiency (AI) group (n = 19). The AI group had significantly more septic shock patients and higher prothrombin time ratios, serum MIF, and baseline cortisol than did the NAR group (<it>P </it>< 0.05). Serum MIF correlated significantly with the SOFA (Sequential Organ Failure Assessment) score, prothrombin time ratio, and delta max cortisol, which is maximum increment of serum cortisol concentration after ACTH stimulation test (rs = 0.414, 0.355, and -0.49, respectively, <it>P </it>< 0.05). Serum MIF also correlated significantly with the delta max cortisol/albumin ratio (rs = -0.501, <it>P </it>= 0.001). Receiver operating characteristic curve analysis identified the threshold serum MIF concentration (19.5 ng/mL, <it>P </it>= 0.01) that segregated patients into the NAR and AI groups.</p> <p>Conclusions</p> <p>The inverse correlation between serum MIF and delta max cortisol or the delta max cortisol/albumin ratio suggests that high serum MIF reflects an insufficient adrenal response in the HPA axis. Serum MIF could be a valuable clinical marker of adrenal insufficiency in sepsis patients.</p

    Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016.

    Get PDF
    OBJECTIVE: To provide an update to "Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012." DESIGN: A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. RESULTS: The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. CONCLUSIONS: Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality
    • …
    corecore