50 research outputs found

    Wear resistant nanocomposites based on biomedical grade UHMWPE paraffin oil and carbon nano-filler: Preliminary biocompatibility and antibacterial activity investigation

    Get PDF
    Abstract: In the present paper, we investigate the eļ¬€ectiveness of nanocomposites (composed of ultra-high molecular weight polyethylene (UHMWPE) mixed with carbon nano-ļ¬ller (CNF) and medical grade paraļ¬ƒn oil (PO), from the biological point of view. Wear measurements were carried out without (air) and with lubricant (distilled water, natural, and artiļ¬cial lubricant), and antibacterial activity and cytotoxicity were evaluated. The results highlighted that the presence of CNF is important in the nanocomposite formulation because it reduces the wear rate and prevents oxidative degradation during its processing. An amount of 1.0 wt % of CNF is best because it reaches the optimal distribution within the polymeric matrix, resulting in the best wear resistant, bio-active, and anti-bacterial nanocomposite among all investigated sample

    Thermal, mechanical and rheological behaviors of nanocomposites based on UHMWPE/paraffin oil/carbon nanofiller obtained by using different dispersion techniques.

    Get PDF
    Ultra-high molecular weight polyethylene (UHMWPE) is a very attractive polymer employed as a high performance material. For its high viscosity, dispersion of fillers is considered a critical point in UHMWPE nanocomposites preparation process. Currently, paraffin oil (PO) is used extensively to overcome this issue in an assisted melt-mixing process. In this work, we have prepared nanocomposites based on UHMWPE, carbon nanofiller (CNF) and PO mixed by different mixing methods: magnetic stirring, ball milling (BM), ultrasonic and Mini-Lab extruder (EX). The aim of this work was to check the effect of the dispersion method on the mechanical and thermal features of UHMWPE/CNF nano composites in order to obtain a material with improved mechanical and physical properties. The samples were characterized by calorimetric, density, mechanical tensile and rheological analyses. Experimental results highlighted that the nanocomposites produced by EX and BM exhibits the best dispersion, good filler matrix interaction and had significantly improved mechanical properties compared to pure UHMWPE. For instance, for the BM method, the yield strength improved to 18.6 MPa (+96%), the yield strain improved by 60%, while stress at break improved by 13%. In summary, the EX improved the stiffness while the BM produced better ductility, melting temperature and the crystalline degree of the nanocomposites

    Flexural, impact, rheological and physical characterizations of POM reinforced by carbon nanotubes and paraffin oil.

    Get PDF
    The paraffin oil dispersion technique innovated in the recent years to synthesize bulk polymer nanocomposite materials has a uniform dispersion. This research work aims to study the effect of added carbon nanotubes (CNTs) on flexural, impact and rheology behaviors of polyoxymethylene (POM) reinforced by 0-0.03 wt% of CNT using paraffin oil dispersion technique. The wettability and lamellar thickness were measured and rheological performance investigated using a parallel plate rheometer. The flexural and impact mechanical properties were also evaluated. The fracture surfaces were then examined by microscopy. The results showed that the energy to break, flexural strength and modulus increased proportionally with the addition of the amount of CNT in the matrix. For the rheology behavior, the viscosity decreased at the low percentage of CNT and then increased with increase in the percentage weight ratio of CNT in the POM matrix. It was also noted that the water contact angle rose with the increase the CNT percentages

    Plastics today: Key challenges and EU strategies towards carbon neutrality: A review

    Get PDF
    Never as today the need for collaborative interactions between industry, the scientific community, NGOs, policy makers and citizens has become crucial for the development of shared political choices and protection of the environment, for the safeguard of future generations. The complex socio-economic and environmental interconnections that underlie the EU strategy of the last years, within the framework of the Agenda 2030 and the green deal, often create perplexity and confusion that make difficult to outline the definition of a common path to achieve carbon neutrality and ā€œnet zero emissionsā€ by 2050. Scope of this work is to give a general overview of EU policies, directives, regulations, and laws concerning polymers and plastic manufacturing, aiming to reduce plastic pollution, allowing for a better understanding of the implications that environmental concern and protection may generate from a social-economical point of view

    Processing and characterization of bio-polyester reactive blends: From thermoplastic blends to cross-linked networks

    Get PDF
    The addition of ethyl ester L-lysine tri-isocyanate (LTI) to mixtures of poly(lactide)/poly(Īµ-caprolactone) has been reported to improve the compatibility of the resulting blends. In the present work, we have investigated the influence of adding increasing amounts of LTI to the mechanical and thermal properties of the blends. Torque trends, plate-plate rheology, differential scanning calorimetry, scanning electron microscopy, and uniaxial tensile characterization were conducted on samples with amounts of LTI comprised between 0.5 and 5 phr. Results suggests that by increasing the content of LTI over 0.5 phr the mechanical and thermal behaviour of the blends tend to change from that of a thermoplastic to that of a cross-linked, rubber-like material with outstanding mechanical properties. Morphological investigations show a very fine, well-dispersed morphology in all cases. Numerical models have been applied to rheological experiments to identify processes and phases in the studied blends, further supporting the hypothesis of a cross-linked phase formed for blends containing more than 0.5 phr of LTI

    Effect of Ethyl Ester L-Lysine Triisocyanate addition to produce reactive PLA/PCL bio-polyester blends for biomedical applications

    Get PDF
    We report in this paper the effects of Ethyl Ester L-Lysine Triisocyanate (LTI) on the physical-mechanical properties of Poly(lactide)/Poly(Īµ-caprolactone) (PLA/PCL) polyesters blends. The PLA/PCL ratios considered were 20/80, 50/50 and 80/20 (wt/wt %) and LTI was added in amounts of 0.0-0.5-1.0 phr. PLA and PCL reacted with LTI during processing in a Brabender twin screw internal mixer to produce block copolymers in-situ. The resulting blends have been characterized by torque measurements, uniaxial tensile tests, Differential Scanning Calorimeter, contact angle measurements with a Phosphate Buffered Saline (PBS) solution, ATR analysis and morphological SEM observations. Experimental results highlighted how LTI enhanced interaction and dispersion of the two components, resulting into a synergic effect in mechanical properties. Mechanical and physical properties can be tailored by changing the blend composition. The most noticeable trend was an increase in ductility of the mixed polymers. Besides, LTI decreased blendā€™s wet ability in PBS and lowered the starting of crystalline phase formation for both polymers, confirming an interaction among them. These reactive blends could find use as biomedical materials, e.g. absorbable suture threads or scaffolds for cellular growth

    Modification induced by laser irradiation on physical features of plastics materials filled with nanoparticles

    Get PDF
    The Thermal Laser Welding (TLW) process involves localized heating at the interface of two pieces of plastic that will be joined. Polymeric materials of Ultra High Molecular Weight Polyethylene (UHMWPE), both pure and containing nanostructures at different concentrations (titanium and silver nanoparticles), were prepared as thin foils in order to produce an interface between a substrate transparent to the infrared laser wavelength and an highly absorbent substrate, in order to be welded by the laser irradiation. The used diode laser operates at 970 nm wavelength, in continuum, with a maximum energy of 100 mJ, for times of the order of 1 -60 s, with a spot of 300 Ī¼m of diameter. The properties of the polymers and of nanocomposite sheets, before and after the laser welding process, were measured in terms of optical characteristics, wetting ability, surface roughness and surface morphology

    Effect of Ethyl Ester L-Lysine Triisocyanate addition to produce reactive PLA/PCL bio-polyester blends for biomedical applications

    Get PDF
    This paper was accepted for publication in the journal Journal of the Mechanical Behavior of Biomedical Materials and the definitive published version is available at http://dx.doi.org/10.1016/j.jmbbm.2017.02.018We report in this paper the effects of Ethyl Ester L-Lysine Triisocyanate (LTI) on the physical-mechanical properties of Poly(lactide)/Poly(Īµ-caprolactone) (PLA/PCL) polyesters blends. The PLA/PCL ratios considered were 20/80, 50/50 and 80/20 (wt/wt %) and LTI was added in amounts of 0.0-0.5-1.0 phr. PLA and PCL reacted with LTI during processing in a Brabender twin screw internal mixer to produce block copolymers in-situ. The resulting blends have been characterized by torque measurements, uniaxial tensile tests, Differential Scanning Calorimeter, contact angle measurements with a Phosphate Buffered Saline (PBS) solution, ATR analysis and morphological SEM observations. Experimental results highlighted how LTI enhanced interaction and dispersion of the two components, resulting into a synergic effect in mechanical properties. Mechanical and physical properties can be tailored by changing the blend composition. The most noticeable trend was an increase in ductility of the mixed polymers. Besides, LTI decreased blendā€™s wet ability in PBS and lowered the starting of crystalline phase formation for both polymers, confirming an interaction among them. These reactive blends could find use as biomedical materials, e.g. absorbable suture threads or scaffolds for cellular growth
    corecore