72 research outputs found

    Precision Medicine in Systemic Mastocytosis

    Get PDF
    Mastocytosis is a rare hematological neoplasm characterized by the proliferation of abnormal clonal mast cells (MCs) in different cutaneous and extracutaneous organs. Its diagnosis is based on well-defined major and minor criteria, including the pathognomonic dense infiltrate of MCs detected in bone marrow (BM), elevated serum tryptase level, abnormal MCs CD25 expression, and the identification of KIT D816V mutation. The World Health Organization (WHO) classification subdivides mastocytosis into a cutaneous form (CM) and five systemic variants (SM), namely indolent/smoldering (ISM/SSM) and advanced SM (AdvSM) including aggressive SM (ASM), SM associated to hematological neoplasms (SM-AHN), and mast cell leukemia (MCL). More than 80% of patients with SM carry a somatic point mutation of KIT at codon 816, which may be targeted by kinase inhibitors. The presence of additional somatic mutations detected by next generation sequencing analysis may impact prognosis and drive treatment strategy, which ranges from symptomatic drugs in indolent forms to kinase-inhibitors active on KIT. Allogeneic stem cell transplant (SCT) may be considered in selected SM cases. Here, we review the clinical, diagnostic, and therapeutic issues of SM, with special emphasis on the translational implications of SM genetics for a precision medicine approach in clinical practice

    L-Proline Induces a Mesenchymal-like Invasive Program in Embryonic Stem Cells by Remodeling H3K9 and H3K36 Methylation

    Get PDF
    SummaryMetabolites are emerging as key mediators of crosstalk between metabolic flux, cellular signaling, and epigenetic regulation of cell fate. We found that the nonessential amino acid L-proline (L-Pro) acts as a signaling molecule that promotes the conversion of embryonic stem cells into mesenchymal-like, spindle-shaped, highly motile, invasive pluripotent stem cells. This embryonic-stem-cell-to-mesenchymal-like transition (esMT) is accompanied by a genome-wide remodeling of the H3K9 and H3K36 methylation status. Consistently, L-Pro-induced esMT is fully reversible either after L-Pro withdrawal or by addition of ascorbic acid (vitamin C), which in turn reduces H3K9 and H3K36 methylation, promoting a mesenchymal-like-to-embryonic-stem-cell transition (MesT). These findings suggest that L-Pro, which is produced by proteolytic remodeling of the extracellular matrix, may act as a microenvironmental cue to control stem cell behavior

    COVID-19 Sequelae and the Host Pro-Inflammatory Response: An Analysis From the OnCovid Registry

    Get PDF
    Background: Fifteen percent of patients with cancer experience symptomatic sequelae, which impair post–COVID-19 outcomes. In this study, we investigated whether a proinflammatory status is associated with the development of COVID-19 sequelae. / Methods: OnCovid recruited 2795 consecutive patients who were diagnosed with Severe Acute Respiratory Syndrome Coronavirus 2 infection between February 27, 2020, and February 14, 2021. This analysis focused on COVID-19 survivors who underwent a clinical reassessment after the exclusion of patients with hematological malignancies. We evaluated the association of inflammatory markers collected at COVID-19 diagnosis with sequelae, considering the impact of previous systemic anticancer therapy. All statistical tests were 2-sided. / Results: Of 1339 eligible patients, 203 experienced at least 1 sequela (15.2%). Median baseline C-reactive protein (CRP; 77.5 mg/L vs 22.2 mg/L, P < .001), lactate dehydrogenase (310 UI/L vs 274 UI/L, P = .03), and the neutrophil to lymphocyte ratio (NLR; 6.0 vs 4.3, P = .001) were statistically significantly higher among patients who experienced sequelae, whereas no association was reported for the platelet to lymphocyte ratio and the OnCovid Inflammatory Score, which includes albumin and lymphocytes. The widest area under the ROC curve (AUC) was reported for baseline CRP (AUC = 0.66, 95% confidence interval [CI]: 0.63 to 0.69), followed by the NLR (AUC = 0.58, 95% CI: 0.55 to 0.61) and lactate dehydrogenase (AUC = 0.57, 95% CI: 0.52 to 0.61). Using a fixed categorical multivariable analysis, high CRP (odds ratio [OR] = 2.56, 95% CI: 1.67 to 3.91) and NLR (OR = 1.45, 95% CI: 1.01 to 2.10) were confirmed to be statistically significantly associated with an increased risk of sequelae. Exposure to chemotherapy was associated with a decreased risk of sequelae (OR = 0.57, 95% CI: 0.36 to 0.91), whereas no associations with immune checkpoint inhibitors, endocrine therapy, and other types of systemic anticancer therapy were found. / Conclusions: Although the association between inflammatory status, recent chemotherapy and sequelae warrants further investigation, our findings suggest that a deranged proinflammatory reaction at COVID-19 diagnosis may predict for sequelae development

    SARS-CoV-2 omicron (B.1.1.529)-related COVID-19 sequelae in vaccinated and unvaccinated patients with cancer: results from the OnCovid registry

    Full text link
    Background COVID-19 sequelae can affect about 15% of patients with cancer who survive the acute phase of SARS-CoV-2 infection and can substantially impair their survival and continuity of oncological care. We aimed to investigate whether previous immunisation affects long-term sequelae in the context of evolving variants of concern of SARS-CoV-2. Methods OnCovid is an active registry that includes patients aged 18 years or older from 37 institutions across Belgium, France, Germany, Italy, Spain, and the UK with a laboratory-confirmed diagnosis of COVID-19 and a history of solid or haematological malignancy, either active or in remission, followed up from COVID-19 diagnosis until death. We evaluated the prevalence of COVID-19 sequelae in patients who survived COVID-19 and underwent a formal clinical reassessment, categorising infection according to the date of diagnosis as the omicron (B.1.1.529) phase from Dec 15, 2021, to Jan 31, 2022; the alpha (B.1.1.7)-delta (B.1.617.2) phase from Dec 1, 2020, to Dec 14, 2021; and the pre-vaccination phase from Feb 27 to Nov 30, 2020. The prevalence of overall COVID-19 sequelae was compared according to SARS-CoV-2 immunisation status and in relation to post-COVID-19 survival and resumption of systemic anticancer therapy. This study is registered with ClinicalTrials.gov, NCT04393974. Findings At the follow-up update on June 20, 2022, 1909 eligible patients, evaluated after a median of 39 days (IQR 24-68) from COVID-19 diagnosis, were included (964 [ 50 center dot 7%] of 1902 patients with sex data were female and 938 [49 center dot 3%] were male). Overall, 317 (16 center dot 6%; 95% CI 14 center dot 8-18 center dot 5) of 1909 patients had at least one sequela from COVID-19 at the first oncological reassessment. The prevalence of COVID-19 sequelae was highest in the prevaccination phase (191 [19 center dot 1%; 95% CI 16 center dot 4-22 center dot 0] of 1000 patients). The prevalence was similar in the alpha-delta phase (110 [16 center dot 8%; 13 center dot 8- 20 center dot 3] of 653 patients, p=0 center dot 24), but significantly lower in the omicron phase (16 [6 center dot 2%; 3 center dot 5-10 center dot 2] of 256 patients, p<0 center dot 0001). In the alpha- delta phase, 84 (18 center dot 3%; 95% CI 14 center dot 6-22 center dot 7) of 458 unvaccinated patients and three (9 center dot 4%; 1 center dot 9- 27 center dot 3) of 32 unvaccinated patients in the omicron phase had sequelae. Patients who received a booster and those who received two vaccine doses had a significantly lower prevalence of overall COVID-19 sequelae than unvaccinated or partially vaccinated patients (ten [7 center dot 4%; 95% CI 3 center dot 5-13 center dot 5] of 136 boosted patients, 18 [9 center dot 8%; 5 center dot 8-15 center dot 5] of 183 patients who had two vaccine doses vs 277 [ 18 center dot 5%; 16 center dot 5-20 center dot 9] of 1489 unvaccinated patients, p=0 center dot 0001), respiratory sequelae (six [4 center dot 4%; 1 center dot 6-9 center dot 6], 11 [6 center dot 0%; 3 center dot 0-10 center dot 7] vs 148 [9 center dot 9%; 8 center dot 4- 11 center dot 6], p= 0 center dot 030), and prolonged fatigue (three [2 center dot 2%; 0 center dot 1-6 center dot 4], ten [5 center dot 4%; 2 center dot 6-10 center dot 0] vs 115 [7 center dot 7%; 6 center dot 3-9 center dot 3], p=0 center dot 037)

    ITALIAN CANCER FIGURES - REPORT 2015: The burden of rare cancers in Italy = I TUMORI IN ITALIA - RAPPORTO 2015: I tumori rari in Italia

    Get PDF
    OBJECTIVES: This collaborative study, based on data collected by the network of Italian Cancer Registries (AIRTUM), describes the burden of rare cancers in Italy. Estimated number of new rare cancer cases yearly diagnosed (incidence), proportion of patients alive after diagnosis (survival), and estimated number of people still alive after a new cancer diagnosis (prevalence) are provided for about 200 different cancer entities. MATERIALS AND METHODS: Data herein presented were provided by AIRTUM population- based cancer registries (CRs), covering nowadays 52% of the Italian population. This monograph uses the AIRTUM database (January 2015), which includes all malignant cancer cases diagnosed between 1976 and 2010. All cases are coded according to the International Classification of Diseases for Oncology (ICD-O-3). Data underwent standard quality checks (described in the AIRTUM data management protocol) and were checked against rare-cancer specific quality indicators proposed and published by RARECARE and HAEMACARE (www.rarecarenet.eu; www.haemacare.eu). The definition and list of rare cancers proposed by the RARECAREnet "Information Network on Rare Cancers" project were adopted: rare cancers are entities (defined as a combination of topographical and morphological codes of the ICD-O-3) having an incidence rate of less than 6 per 100,000 per year in the European population. This monograph presents 198 rare cancers grouped in 14 major groups. Crude incidence rates were estimated as the number of all new cancers occurring in 2000-2010 divided by the overall population at risk, for males and females (also for gender-specific tumours).The proportion of rare cancers out of the total cancers (rare and common) by site was also calculated. Incidence rates by sex and age are reported. The expected number of new cases in 2015 in Italy was estimated assuming the incidence in Italy to be the same as in the AIRTUM area. One- and 5-year relative survival estimates of cases aged 0-99 years diagnosed between 2000 and 2008 in the AIRTUM database, and followed up to 31 December 2009, were calculated using complete cohort survival analysis. To estimate the observed prevalence in Italy, incidence and follow-up data from 11 CRs for the period 1992-2006 were used, with a prevalence index date of 1 January 2007. Observed prevalence in the general population was disentangled by time prior to the reference date (≤2 years, 2-5 years, ≤15 years). To calculate the complete prevalence proportion at 1 January 2007 in Italy, the 15-year observed prevalence was corrected by the completeness index, in order to account for those cancer survivors diagnosed before the cancer registry activity started. The completeness index by cancer and age was obtained by means of statistical regression models, using incidence and survival data available in the European RARECAREnet data. RESULTS: In total, 339,403 tumours were included in the incidence analysis. The annual incidence rate (IR) of all 198 rare cancers in the period 2000-2010 was 147 per 100,000 per year, corresponding to about 89,000 new diagnoses in Italy each year, accounting for 25% of all cancer. Five cancers, rare at European level, were not rare in Italy because their IR was higher than 6 per 100,000; these tumours were: diffuse large B-cell lymphoma and squamous cell carcinoma of larynx (whose IRs in Italy were 7 per 100,000), multiple myeloma (IR: 8 per 100,000), hepatocellular carcinoma (IR: 9 per 100,000) and carcinoma of thyroid gland (IR: 14 per 100,000). Among the remaining 193 rare cancers, more than two thirds (No. 139) had an annual IR &lt;0.5 per 100,000, accounting for about 7,100 new cancers cases; for 25 cancer types, the IR ranged between 0.5 and 1 per 100,000, accounting for about 10,000 new diagnoses; while for 29 cancer types the IR was between 1 and 6 per 100,000, accounting for about 41,000 new cancer cases. Among all rare cancers diagnosed in Italy, 7% were rare haematological diseases (IR: 41 per 100,000), 18% were solid rare cancers. Among the latter, the rare epithelial tumours of the digestive system were the most common (23%, IR: 26 per 100,000), followed by epithelial tumours of head and neck (17%, IR: 19) and rare cancers of the female genital system (17%, IR: 17), endocrine tumours (13% including thyroid carcinomas and less than 1% with an IR of 0.4 excluding thyroid carcinomas), sarcomas (8%, IR: 9 per 100,000), central nervous system tumours and rare epithelial tumours of the thoracic cavity (5%with an IR equal to 6 and 5 per 100,000, respectively). The remaining (rare male genital tumours, IR: 4 per 100,000; tumours of eye, IR: 0.7 per 100,000; neuroendocrine tumours, IR: 4 per 100,000; embryonal tumours, IR: 0.4 per 100,000; rare skin tumours and malignant melanoma of mucosae, IR: 0.8 per 100,000) each constituted &lt;4% of all solid rare cancers. Patients with rare cancers were on average younger than those with common cancers. Essentially, all childhood cancers were rare, while after age 40 years, the common cancers (breast, prostate, colon, rectum, and lung) became increasingly more frequent. For 254,821 rare cancers diagnosed in 2000-2008, 5-year RS was on average 55%, lower than the corresponding figures for patients with common cancers (68%). RS was lower for rare cancers than for common cancers at 1 year and continued to diverge up to 3 years, while the gap remained constant from 3 to 5 years after diagnosis. For rare and common cancers, survival decreased with increasing age. Five-year RS was similar and high for both rare and common cancers up to 54 years; it decreased with age, especially after 54 years, with the elderly (75+ years) having a 37% and 20% lower survival than those aged 55-64 years for rare and common cancers, respectively. We estimated that about 900,000 people were alive in Italy with a previous diagnosis of a rare cancer in 2010 (prevalence). The highest prevalence was observed for rare haematological diseases (278 per 100,000) and rare tumours of the female genital system (265 per 100,000). Very low prevalence (&lt;10 prt 100,000) was observed for rare epithelial skin cancers, for rare epithelial tumours of the digestive system and rare epithelial tumours of the thoracic cavity. COMMENTS: One in four cancers cases diagnosed in Italy is a rare cancer, in agreement with estimates of 24% calculated in Europe overall. In Italy, the group of all rare cancers combined, include 5 cancer types with an IR&gt;6 per 100,000 in Italy, in particular thyroid cancer (IR: 14 per 100,000).The exclusion of thyroid carcinoma from rare cancers reduces the proportion of them in Italy in 2010 to 22%. Differences in incidence across population can be due to the different distribution of risk factors (whether environmental, lifestyle, occupational, or genetic), heterogeneous diagnostic intensity activity, as well as different diagnostic capacity; moreover heterogeneity in accuracy of registration may determine some minor differences in the account of rare cancers. Rare cancers had worse prognosis than common cancers at 1, 3, and 5 years from diagnosis. Differences between rare and common cancers were small 1 year after diagnosis, but survival for rare cancers declined more markedly thereafter, consistent with the idea that treatments for rare cancers are less effective than those for common cancers. However, differences in stage at diagnosis could not be excluded, as 1- and 3-year RS for rare cancers was lower than the corresponding figures for common cancers. Moreover, rare cancers include many cancer entities with a bad prognosis (5-year RS &lt;50%): cancer of head and neck, oesophagus, small intestine, ovary, brain, biliary tract, liver, pleura, multiple myeloma, acute myeloid and lymphatic leukaemia; in contrast, most common cancer cases are breast, prostate, and colorectal cancers, which have a good prognosis. The high prevalence observed for rare haematological diseases and rare tumours of the female genital system is due to their high incidence (the majority of haematological diseases are rare and gynaecological cancers added up to fairly high incidence rates) and relatively good prognosis. The low prevalence of rare epithelial tumours of the digestive system was due to the low survival rates of the majority of tumours included in this group (oesophagus, stomach, small intestine, pancreas, and liver), regardless of the high incidence rate of rare epithelial cancers of these sites. This AIRTUM study confirms that rare cancers are a major public health problem in Italy and provides quantitative estimations, for the first time in Italy, to a problem long known to exist. This monograph provides detailed epidemiologic indicators for almost 200 rare cancers, the majority of which (72%) are very rare (IR&lt;0.5 per 100,000). These data are of major interest for different stakeholders. Health care planners can find useful information herein to properly plan and think of how to reorganise health care services. Researchers now have numbers to design clinical trials considering alternative study designs and statistical approaches. Population-based cancer registries with good quality data are the best source of information to describe the rare cancer burden in a population

    Improving the dose distributions in minibeam radiation therapy: helium ions vs protons

    No full text
    International audiencePurposeCharged particle minibeam radiation therapy is a novel therapeutic strategy aiming at reducing the normal tissue complication probability by combining the normal tissue sparing of submillimetric, spatially fractionated beams with the improved dose deposition of ions. This may allow a safe dose escalation in the tumor and other targets. In particular, proton minibeam radiation therapy has already proven a remarkable increase of the therapeutic index for high‐grade gliomas in animal experiments. The reduced multiple Coulomb scattering and nuclear fragmentation of helium ions compared to protons and heavier ions, respectively, make them a good candidate for minibeam radiation therapy (MBRT). The purpose of the present work was to perform a comprehensive dosimetric comparison between proton and helium MBRT (pMBRT and HeMBRT).MethodsProton and helium minibeams of the same range (7.7 cm) have been simulated in a water phantom and in CT images of an anonymized human head. The Monte Carlo simulation toolkit GATE v8.0 was used. Different beam sizes (1 and 3 mm) and multiple beam spacings were evaluated. Depth dose curves, lateral profiles, peak‐to‐valley dose ratios (PVDR), and dose‐averaged linear energy transfer (LET) were assessed. Furthermore, evaluations of the secondary products in the valley regions were carried out and a basic example of a treatment plan in pMBRT and HeMBRT was considered.ResultsCompared to protons, helium ions yield a significantly improved Bragg‐peak‐to‐entrance dose ratio (BEDR) and higher PVDR at equal minibeam spacing. At the same time, due to the lower lateral scattering, dose homogenization in the target becomes more difficult for helium ions than for protons. To achieve a homogeneous target dose in HeMBRT, the minibeam spacing has to be reduced which in turn decreases the PVDR in normal tissues to values lower than those observed for protons. LET maps show up to 20%–30% higher values in the valley regions than in the peak regions for all evaluated cases. Helium ions lead to higher LET than protons at all depths, including the entrance region. However, this is compensated by a lower dose at shallow depths thanks to the improved BEDR of HeMBRT.ConclusionsHelium ions might offer a good choice for minibeam radiation therapy. They provide a more pronounced spatial fractionation than protons without the possible drawbacks linked to nuclear fragmentation of heavier ions. However, biological experiments are needed to evaluate whether the higher dose heterogeneity in the target volume in HeMBRT would still lead to an efficient tumor control, as in the case of pMBRT

    Advancing proton minibeam radiation therapy: magnetically focussed proton minibeams at a clinical centre

    No full text
    International audienceApplied nuclear physics and biophysics are ubiquitous in our lives and is has large impact on the society covering a variety of different topics. The field is in fast and exponential growth and in the next future new accelerators in Europe, but also worldwide, will offer to researchers even more opportunities to further explore the application of biomedical research. Some example of this vast landscape are the innovative techniques of cancer radiotherapy, as the particle therapy of cancer or the high dose/rate irradiation therapy, the study of the effect of the cosmic rays on the astronauts for radio protection purpose in long term space missions. Such a different topics have in common the biophysics effect of the ionizing radiation on living tissue. The aim of the AUSPICE project is to establish a network between the several research groups and to build a coordination of efforts so to avoid duplications and instead have synergistic interactions for biomedical research at accelerators. AUSPICE can have a large impact of the future production of this field in Europe, that sees now very active and competitive research groups, but with very poor intercommunication, usually independent funding, and with scarce cooperation. AUSPICE will create a network in an highly fractionated community, boosting the interdisciplinary approach to the problem. fostering the application of the research results in the market.Particularly care will be given to the creation a community of young researchers strongly interconnected and acting as a bridge between research and applicatio

    Monte Carlo Comparison of Proton and Helium-ion Minibeam Generation Techniques

    No full text
    International audienceProton minibeam radiation therapy (pMBRT) is a novel therapeutic strategy that combines the normal tissue sparing of submillimetric, spatially fractionated beams with the improved dose deposition of protons. In contrast to conventional approaches which work with comparatively large beam diameters (5 mm to several centimetres) producing laterally homogeneous fields, pMBRT uses submillimetric minibeams to create a distinct spatial modulation of the dose featuring alternating regions of high dose (peaks) and low dose (valleys). This spatial fractionation can increase the tolerance of normal tissue and may allow a safe dose escalation in the tumour. Important quantities in this context are the valley dose as well as the peak-to-valley dose ratio (PVDR). Creating submillimetric proton beams for clinical applications is a challenging task that until now has been realized with mechanical collimators (metal blocks with thin slits or holes). However, this method is inherently inefficient, inflexible and creates undesirable secondary neutrons. We therefore recently proposed a method for obtaining clinical minibeams using only magnetic focusing. In this study, we performed Monte Carlo simulations in order to compare minibeams generated using the new method of magnetic focusing with two techniques involving mechanical collimators (collimator and broad beam irradiation, collimator and pencil beam scanning). The dose deposition in water was simulated and dosimetric aspects [beam broadening, depth-dose profiles, PVDR and Bragg-peak-to-entrance dose ratio (BEDR)] as well as irradiation efficiencies were evaluated. Apart from protons, we also considered helium ions which, due to their reduced lateral scattering and sharper Bragg peak, may present a promising alternative for minibeam radiation therapy. Magnetically focused minibeams exhibited a 20–60 times higher PVDR than mechanically collimated minibeams and yielded an increase in irradiation efficiency of up to two orders of magnitude. Compared to proton minibeams, helium ion minibeams were found to broaden at a slower rate and yield an even higher PVDR (at the same minibeam spacing) as well as a more favourable BEDR. Moreover, the simulations showed that methods developed for proton minibeams are suitable for the generation of helium ion minibeams.</jats:p

    From a Symptom-Based to a Person-Centered Approach in Treating Depressive Disorders in Adolescence: A Clinical Case Formulation Using the Psychodynamic Diagnostic Manual (PDM-2)’s Framework

    No full text
    Background: Depressive disorders in adolescence are among the most challenging clinical syndromes to diagnostically identify and treat in psychotherapy. The Psychodynamic Diagnostic Manual, Second Edition (PDM-2) proposes an integration between nomothetic knowledge and an idiographic understanding of adolescent patients suffering from depression to promote a person-centered approach. This single-case study was aimed at describing and discussing the clinical value of an accurate diagnostic assessment within the PDM-2 framework. Method: Albert, a 16-year-old adolescent with a DSM-5 diagnosis of major depressive disorder, was assessed using instruments from various perspectives: the Structured Clinical Interview for DSM-5; the Psychodynamic Chart-Adolescent of the PDM-2, and other clinician-report instruments; and the Shedler–Westen Assessment Procedure for Adolescents and Defense Mechanisms Rating Scale Q-sort, coded by external observers. Results: Albert’s assessment revealed impairments in various mental capacities, especially in regulating self-esteem. He presented a borderline personality organization at a high level and an emerging narcissistic personality syndrome. Conclusions: The case discussion showed the importance of providing clinically meaningful assessments to plan for effective treatments in youth populations. Especially, it is necessary to understand the adolescent’s unique characteristics in terms of mental and personality functioning and consider the developmental trajectories and adaptation processes that characterize this specific developmental period
    corecore