39 research outputs found
Testicular degeneration and infertility following arbovirus infection
Arboviruses can cause a variety of clinical signs including febrile illness, arthritis, encephalitis and hemorrhagic fever. The recent Zika epidemic highlighted the possibility that arboviruses may also negatively affect the male reproductive tract. In this study, we focused on bluetongue virus (BTV), the causative agent of bluetongue and one of the major arboviruses of ruminants. We show that rams that recovered from bluetongue displayed signs of testicular degeneration and azoospermia up to 100 days after the initial infection. Importantly, testicular degeneration was induced in rams experimentally infected with either a high (BTV-1IT2006) or low (BTV-1IT2013) virulence strain of BTV. Rams infected with the low virulent BTV strain displayed testicular lesions in the absence of other major clinical signs. Testicular lesions in BTV-infected rams were due to viral replication in the endothelial cells of the peritubular areas of the testes, resulting in stimulation of a type-I IFN response, reduction of testosterone biosynthesis by Leydig cells, and destruction of Sertoli cells and the blood-testis barrier in more severe cases. Hence, BTV induces testicular degeneration and disruption of spermatogenesis by replicating solely in the endothelial cells of the peritubular areas unlike other gonadotropic viruses. This study shows that a naturally occurring arboviral disease can cause testicular degeneration and affect male fertility at least temporarily
Genomic analysis of Sardinian 26544/OG10 isolate of African swine fever virus
Abstract Comparative genomic analysis aims to underscore genetic assortment diversification in distinct viral isolates, to identify deletions and to carry out evolutionary studies. We sequenced the first complete genome of an ASFV p72 genotype I strain isolated from domestic pigs in Sardinia (Italy) using Next-Generation Sequence (NGS) technology. The genome is 182,906 bp long, contains 164 ORFs and has a 99.20% nucleotide identity to the L60 strain. Comparison analysis against the 16 ASFV genomes available in the database showed that 136 ORFs are present in nine ASFV isolates annotated to date. The most divergent ORFs codify for uncharacterized proteins such as X69R and DP96R, which have 51.3% and 70.4% nucleotide identity to the other isolates. A comparison between the Sardinian isolate and the avirulent isolates OURT 88/3, NHV, BA71V was also carried out. Major variations were found within the multigene families (MGFs) located in the left and right genome regions
Epidemiology and genetic characterization of <i>Border Disease Virus</i> circulating in Sardinia
Border Disease Virus (BDV), a pestivirus from the Flaviviridae family, is an important pathogen of sheep and goats responsible for significant losses in farms around the world. In spite of the relevance of this pathogen there are only a few epidemiological studies on BDV infection and, as a consequence, the economic impact on small ruminant productions is probably under-estimated. The aims of this study are i) to determine the distribution of BDV in small ruminant farms in Sardinia and genetically characterize circulating strains ii) analyze the relation between seroprevalence, Somatic Cells Count (SCC) an milk yeld. ELISA was performed using “BVDV/MD/BDV p80 Protein Antibody Test Kit” (IDEXX) on serum of bulk tank milk (BTM) samples collected from Sardinian sheep flocks and goat herds between spring 2014 and 2015. The number of sampled farms corresponded to 8.5% of all registered farms in Sardinia. RNA was isolated using Qiamp Viral RNA mini kit from the cellular fraction of each ELISA positive BTV sample and amplified by rt-PCR using complementary primers to a highly conserved region in the untranslated regions (UTRs) of the viral genome. The amplicons were sequenced for phylogenetic analysis. Geographic distribution of collected specimen, seroprevalence and virological positive samples were analyzed via GIS (ESRI ARCGIS 10.3). ELISA screening shows a seroprevalence of 8.3% among goat farms and 10.5% among ovine farms. Ten from the ELISA positive samples were found rt-PCR positive. The sequence analysis indicates that all the amplified samples match with BDV genomes and the phylogenetic analysis revealed that all the viruses clustered in the same group classified as BDV-7. BDV-7 is the only group isolated in Sardinia so far
Phylogenetic analysis of porcine circovirus type 2 in Sardinia, Italy, shows genotype 2d circulation among domestic pigs and wild boars
Abstract Porcine circovirus type 2 (PCV2) is associated with multi-factorial syndromes, commonly known as porcine-circovirus–associated diseases, which cause severe economic losses in the swine industry worldwide. Four genotypes (PCV2a, PCV2b, PCV2c, and PCV2d) have been identified. Lately, the prevalence of PCV2d has been increasing in many countries, thereby prefiguring a global replacement of PCV2b. Wild boars are also susceptible to PCV2 infection, with virus prevalence similar to that of domestic pigs. This work was aimed at expanding the knowledge about the molecular epidemiology of PCV2 in Italy. For this purpose, we analysed 40 complete ORF-2 sequences from PCV2 strains isolated from domestic pigs and wild boars in Sardinia (Italy) over a period of 5 years (2009–2013). Phylogenetic and Bayesian analyses were performed on three data sets compiled from DNA sequences over a large geographical area. PCV2b was found to be dominant in Sardinia, whereas no PCV2a and PCV2c were found. This study indicates the presence of genotype PCV2d-2 infecting both domestic and wild pigs, thus confirming its circulation in Italy. Sardinian sequences clustered mostly with Italian isolates and with strains from China, Belgium, Croatia, Taiwan, Korea, and Portugal. Genetic variability of PCV2 in Sardinia appears to be a result of both local viral evolution and different epidemic introduction events
Characterization of the interaction of African swine fever virus with monocytes and derived macrophage subsets.
Abstract African swine fever (ASF) is a devastating disease for which there is no vaccine available. The ASF virus (ASFV) primarily infects cells of the myeloid lineage and this tropism is thought to be crucial for disease pathogenesis. A detailed in vitro characterization of the interactions of a virulent Sardinian isolate (22653/14) and a tissue culture adapted avirulent strain (BA71V) of ASFV with porcine monocytes, un-activated (moMΦ), classically (moM1) and alternatively (moM2) activated monocyte-derived macrophages was conducted in an attempt to better understand this relationship. Using a multiplicity-of-infection (MOI) of 1, both viruses were able to infect monocytes and macrophage subsets, but BA71V presented a reduced ability to infect moM1 compared to 22653/14, with higher expression of early compared to late proteins. Using an MOI of 0.01, only 22653/14 was able to replicate in all the macrophage subsets, with initially lowest in moM1 and moM2. No differences were observed in the expression of CD163 between ASFV infected and uninfected bystander cells. ASFV down-regulated CD16 expression but did not modulate MHC class II levels in monocytes and macrophage subsets. BA71V-infected but not 22653/14-infected moMΦ and moM2 presented with a reduced expression of MHC class I compared to the mock-infected controls. Higher levels of IL-18, IL1-β and IL-1α were released from moM1 after infection with BA71V compared to 22653/14 or mock-infected control. These results revealed differences between these ASFV strains, suggesting that virulent isolates have evolved mechanisms to counteract activated macrophages responses, promoting their survival, dissemination in the host and so ASF pathogenesis
Evaluation of Haematological and Immunological Parameters of the ASFV Lv17/WB/Rie1 Strain and Its Derived Mutant Lv17/WB/Rie1/d110-11L against ASFV Challenge Infection in Domestic Pigs
African swine fever virus (ASFV) is the etiological agent of a haemorrhagic disease that threatens the global pig industry. There is an urgency to develop a safe and efficient vaccine, but the knowledge of the immune–pathogenetic mechanisms behind ASFV infection is still very limited. In this paper, we evaluated the haematological and immunological parameters of domestic pigs vaccinated with the ASFV Lv17/WB/Rie1 strain or its derived mutant Lv17/WB/Rie1/d110-11L and then challenged with virulent Armenia/07 ASFV. Circulating levels of C-reactive protein (CRP), 13 key cytokines and 11 haematological parameters were evaluated throughout the study. Lv17/WB/Rie1 triggered an inflammatory response, with increased levels of CRP and pro-inflammatory cytokines, and induced lymphopenia, thrombocytopenia and a decline in red blood cell (RBC) parameters, although this was transitory. Lv17/WB/Rie1/d110-11L triggered only transitory thrombocytopenia and a mild inflammatory reaction, with no increase in serum levels of pro-inflammatory cytokines, but it raised IL-1Ra levels. Both strains counteracted several adverse reactions elicited by virulent challenge, like thrombocytopenia, a decline in RBC parameters, and inflammation. Within this paper, we provided a deep portrayal of the impact of diverse ASFV strains on the domestic pig’s immune system. A better understanding of these immune–pathological mechanisms would help to design suitable vaccines against this disease
In vitro phenotypic characterisation of two genotype I African swine fever viruses with genomic deletion isolated from Sardinian wild boars
African swine fever virus (ASFV) causes a devastating disease affecting domestic and wild pigs. ASF was first introduced in Sardinia in 1978 and until 2019 only genotype I isolates were identified. A remarkable genetic stability of Sardinian ASFV isolates was described, nevertheless in 2019 two wild boar isolates with a sustained genomic deletion (4342 base pairs) were identified (7303WB/19, 7212WB/19). In this study, we therefore performed in vitro experiments with monocyte-derived macrophages (moMФ) to unravel the phenotypic characteristics of these deleted viruses. Both 7303WB/19 and 7212WB/19 presented a lower growth kinetic in moMФ compared to virulent Sardinian 26544/OG10, using either a high (1) or a low (0.01) multiplicity of infection (MOI). In addition, flow cytometric analysis showed that both 7303WB/19 and 7212WB/19 presented lower intracellular levels of both early and late ASFV proteins. We subsequently investigated whether deleted virus variants were previously circulating in wild boars in Sardinia. In the four years preceding the last genotype I isolation (February 2015–January 2019), other eight wild boar isolates were collected, all belonging to p72 genotype I, B602L subgroup X, but none of them presented a sustained genomic deletion. Overall, we observed the deleted virus isolates in Sardinia only in 2019, at the end of a strong eradication campaign, and our data suggest that it might possess an attenuated phenotype in vivo. A better understanding of ASFV evolution in endemic territories might contribute to development of effective control measures against ASF
Goat milk extracellular vesicles: immuno-modulation effects on porcine monocyte-derived macrophages in vitro
IntroductionExtracellular vesicles (EVs) are nanometric-membrane-bound sub-cellular structures, which can be recovered from milk. Milk EVs have drawn increasing interest due to their potential biomedical applications, therefore it is important to investigate their impact on key immune cells, such as macrophages.MethodsIn this work, the immunomodulatory effects of goat milk EVs on untreated (moMФ) and classically activated (moM1) porcine monocyte-derived macrophages were investigated using flow cytometry, ELISA, and gene expression assays.ResultsThese particles were efficiently internalized by macrophages and high doses (60 mg protein weight) triggered the upregulation of MHC I and MHC II DR on moMФ, but not on moM1. In moMФ, exposure to low doses (0.6 mg) of mEVs enhanced the gene expression of IL10, EBI3, and IFNB, whereas high doses up-regulated several pro-inflammatory cytokines. These nanosized structures slightly modulated cytokine gene expression on moM1. Accordingly, the cytokine (protein) contents in culture supernatants of moMФ were mildly affected by exposure to low doses of mEVs, whereas high doses promoted the increased release of TNF, IL-8, IL-1a, IL-1b, IL-1Ra, IL-6, IL-10, and IL-12. The cytokines content in moM1 supernatants was not critically affected.DiscussionOverall, our data support a clinical application of these molecules: they polarized macrophages toward an M1-like phenotype, but this activation seemed to be controlled, to prevent potentially pathological over-reaction to stressors
Cell Lines for the Development of African Swine Fever Virus Vaccine Candidates: An Update
African swine fever virus (ASFV) is the etiological agent of a highly lethal disease in both domestic and wild pigs. The virus has rapidly spread worldwide and has no available licensed vaccine. An obstacle to the construction of a safe and efficient vaccine is the lack of a suitable cell line for ASFV isolation and propagation. Macrophages are the main targets for ASFV, and they have been widely used to study virus–host interactions; nevertheless, obtaining these cells is time-consuming and expensive, and they are not ethically suitable for the production of large-scale vaccines. To overcome these issues, different virulent field isolates have been adapted on monkey or human continuous cells lines; however, several culture passages often lead to significant genetic modifications and the loss of immunogenicity of the adapted strain. Thus, several groups have attempted to establish a porcine cell line able to sustain ASFV growth. Preliminary data suggested that some porcine continuous cell lines might be an alternative to primary macrophages for ASFV research and for large-scale vaccine production, although further studies are still needed. In this review, we summarize the research to investigate the most suitable cell line for ASFV isolation and propagation