43 research outputs found

    Phenotypic Diversity in Domesticated and Wild Timothy Grass, and Closely Related Species for Forage Breeding

    Get PDF
    Timothy grass (Phleum pratense L.) is one of the most important forage crops in temperate regions. Forage production, however, faces many challenges, and new cultivars adapted to a changing climate are needed. Wild populations and relatives of timothy may serve as valuable genetic resources in the breeding of improved cultivars. The aim of our study is to provide knowledge about the phenotypic diversity in domesticated (cultivars, breeding lines and landraces) and wild timothy and two closely related species, P. nodosum (lowland species) and P. alpinum, (high altitude species) to identify potential genetic resources. A total of 244 accessions of timothy and the two related species were studied for growth (plant height, fresh and dry weight) and plant development (days to stem elongation, days to booting and days to heading) in the field and in a greenhouse. We found a large diversity in development and growth between the three Phleum species, as well as between the accessions within each species. Timothy showed the highest growth, but no significant difference was found between wild accessions and cultivars of timothy in fresh and dry weight. However, these two groups of accessions showed significant differences in plant development, where timothy cultivars as a group reached flowering earlier than the wild accessions. This suggests that there has not been a strong directional selection towards increased yield during the domestication and breeding of timothy; rather, timothy has been changed for other traits such as earlier heading. Principal component analysis and cluster analysis based on all traits revealed distinct clusters. Accessions falling within the same cluster showed similarities in the development and growth rather than the type of accession. The large diversity found in this study shows the potential of using timothy accessions as genetic resources in crosses with existing cultivars. Also, accessions of P. nodosum with favorable traits can be candidates for the domestication of a novel forage crop, and the high-altitude relative P. alpinum may be a source of genes for the development of more cold and stresstolerant cultivars

    Differential breeding targets in wheat influence non-target traits related to grain quality, but not crop nitrogen requirement

    Get PDF
    Wheat is considered an established crop with a long breeding history. Its varieties are being developed with differential breeding targets, e.g. high grain yield or high grain protein content. The different breeding targets strongly influence performance in the targeted traits, but may also influence non-target traits related to grain quality, biofortification potential, and nutrient accumulation. This influence of non-targeted traits may, in turn, affect the environmental performance and ecological sustainability of the crop. The aim of this study was to evaluate the relationships between breeding target traits such as grain yield and grain quality, and non-target traits for three groups of spring wheat varieties differing in breeding targets, i.e. high yield (I), organic high protein (II), and intermediate (III) wheat types. Data from a field trial with nine spring wheat varieties grown under two soil compaction treatments over two years with contrasting weather were used. We found that wheat type affected most target and non-target traits with partly large effect sizes (0.874≤η  2p≤0.173) , but not nitrogen (N) uptake efficiency ( η  2p =0.006), which reflects the potential N resource requirement of the crop. Associations shown between target and non-target traits will be advantageous for wheat breeding programs. Wheat type and environment had similarly sized effects on grain yield and quality traits. Grain concentrations of various macro- and micro-nutrients were frequently, but not always, correlated, indicating that the biofortification potential varied between wheat types and was affected by environmental conditions. The grain and starch yields per accumulated plant N were higher in the wheat varieties bred for high grain yields than those bred for high grain protein content; whilst the protein yield per accumulated whole-plant N was similar across all wheat types despite much higher grain N concentrations in the high-protein varieties. Additionally, most of the evaluated traits tended to preserve their static stability across environments. The results link grain yield and grain quality traits to crop nutrient accumulation aspects relevant for the environmental performance and ecological sustainability of the crop. Future breeding strategies should consider the non-target effects in traits that influence the environmental performance of the crop

    Evidence for magnesium-phosphorus synergism and co-limitation of grain yield in wheat agriculture

    Get PDF
    Modern crop production is characterized by high nitrogen (N) application rates, which can influence the co-limitation of harvested yield by other nutrients. Using a multidimensional niche volume concept and scaling exponents frequently applied in plant ecological research, we report that increased N and phosphorus (P) uptake in a growing wheat crop along with enhanced grain biomass is associated with more than proportional increase of other nutrients. Furthermore, N conversion efficiency and grain yield are strongly affected by the magnesium (Mg) to P ratio in the growing crop. We analyzed a field trial in Central Sweden including nine wheat varieties grown during two years with contrasting weather, and found evidence for Mg co-limitation at lower grain yields and P co-limitation at higher yields. We argue that critical concentrations of single nutrients, which are often applied in agronomy, should be replaced by nutrient ratios. In addition, links between plant P and Mg contents and root traits were found; high root number enhanced the P:N ratio, whilst steep root angle, indicating deep roots, increased the Mg:N ratio. The results have significant implications on the management and breeding targets of agriculturally grown wheat, which is one of the most important food crops worldwide

    Response to Waterlogging Stress in Wild and Domesticated Accessions of Timothy (Phleum pratense) and Its Relatives P. alpinum and P. nodosum

    Get PDF
    Timothy (Phleum pratense) is a cool-season perennial forage grass widely grown for silage and hay production in northern regions. Climate change scenarios predict an increase in extreme weather events with fluctuating periods of high rainfall, requiring new varieties adapted to waterlogging (WL). Wild accessions could serve as germplasm for breeding, and we evaluated the responses of 11 wild and 8 domesticated accessions of timothy, P. nodosum and P. alpinum from different locations in northern Europe. Young plants at tillering stage were exposed to WL for 21 days in a greenhouse, and responses in growth allocation and root anatomy were studied. All accessions produced adventitious roots and changed allocation of growth between shoot and root as a response to WL, but the magnitude of these responses varied among species and among accessions. P. pratense responded less in these traits in response to WL than the other two species. The ability to form aerenchyma in the root cortex in response to WL was found for all species and also varied among species and among accessions, with the highest induction in P. pratense. Interestingly, some accessions were able to maintain and even increase root growth, producing more leaves and tillers, while others showed a reduction in the root system. Shoot dry weight (SDW) was not significantly affected by WL, but some accessions showed different and significant responses in the rate of production of leaves and tillers. Overall correlations between SDW and aerenchyma and between SDW and adventitious root formation were found. This study identified two wild timothy accessions and one wild P. nodosum accession based on shoot and root system growth, aerenchyma formation and having a root anatomy considered to be favorable for WL tolerance. These accessions are interesting genetic resources and candidates for development of climate-resilient timothy varieties

    Perennials as Future Grain Crops: Opportunities and Challenges

    Get PDF
    Perennial grain crops could make a valuable addition to sustainable agriculture, potentially even as an alternative to their annual counterparts. The ability of perennials to grow year after year significantly reduces the number of agricultural inputs required, in terms of both planting and weed control, while reduced tillage improves soil health and on-farm biodiversity. Presently, perennial grain crops are not grown at large scale, mainly due to their early stages of domestication and current low yields. Narrowing the yield gap between perennial and annual grain crops will depend on characterizing differences in their life cycles, resource allocation, and reproductive strategies and understanding the trade-offs between annualism, perennialism, and yield. The genetic and biochemical pathways controlling plant growth, physiology, and senescence should be analyzed in perennial crop plants. This information could then be used to facilitate tailored genetic improvement of selected perennial grain crops to improve agronomic traits and enhance yield, while maintaining the benefits associated with perennialism

    Towards the Development of Perennial Barley for Cold Temperate Climates—Evaluation of Wild Barley Relatives as Genetic Resources

    No full text
    Perennial cereal crops could limit the negative impacts of agriculture on the environment and climate change. In cold temperate climates, perennial plants must be adapted to seasonal changes and abiotic stresses, such as frost, to be able to regrow for several years. Wild crop relatives that are perennials and already adapted to cold temperate climates may provide genetic resources for breeding new perennial cereal grain crops. Barley (Hordeum vulgare) is one of the most important cereals in northern agricultural areas, and its related perennial species may be good candidates for the development of perennial cereals. We evaluated a diverse set of 17 wild perennial Hordeum species represented by 67 accessions in field conditions with a cold winter climate and long days during summer in Central Sweden (latitude 60° N). Six species (H. brevisubulatum, H. bulbosum, H. fuegianum, H. jubatum, H. lechleri and H. secalinum) showed regrowth and formation of spikes for four seasons. The most distant perennial relative of barley, H. stenostachys, showed weak regrowth. H. bulbosum, the closest perennial barley relative, had a large number of accessions with wide geographic origins that showed good regrowth. Together with its storage bulbs and its cross-compatibility with barley, this makes H. bulbosum an important genetic resource for the development of perennial Hordeum grains using either the domestication or the wide-hybridization strategy

    Electrophoretic evidence for disomic inheritance and allopolyploid origin of the octoploid Cerastium alpinum (Caryophyllaceae)

    No full text
    The mode of inheritance of six enzyme markers in the octoploid alpine plant Cerastium alpinum was analyzed. Offspring from crosses between heterozygotes showed fixed heterozygosity at malate dehydrogenase-2, phosphoglucoisomerase-2, triosephosphate isomerase-2, and triosephosphate isomerase-3. Phosphoglucomutase-1 also showed fixed heterozygosity except in offspring from one cross. Fixed heterozygosity in five enzyme systems suggests that C. alpinum has originated through at least some allopolyploidization. Offspring from plants heterozygous for two alleles at the menadione reductase-1 (Mr-1) locus did not deviate significantly from a 1:2:1 ratio. The large proportion of homozygotes suggests disomic inheritance because any kind of polysomic inheritance would result in a substantially increased proportion of heterozygotes relative to disomic inheritance. Assuming a diploid model for Mr-1, this locus was used to analyze the population genetic structure within C. alpinum populations. Inbreeding was found in many alpine populations. This may help explain the large genetic distances found among alpine populations in a previous study. The analysis is only based on one segregating locus, and the results should therefore be treated with caution. However, by establishing the mode of inheritance through crosses, we have been able to use a codominant marker in population genetic analysis of an octoploid plant
    corecore