11 research outputs found

    Holocene hydrological variability of Lake Ladoga, northwest Russia, as inferred from diatom oxygen isotopes

    Get PDF
    This article presents a new comprehensive assessment of the Holocene hydrological variability of Lake Ladoga, northwest Russia. The reconstruction is based on oxygen isotopes of lacustrine diatom silica (δ18Odiatom) preserved in sediment core Co 1309, and is complemented by a diatom assemblage analysis and a survey of modern isotope hydrology. The data indicate that Lake Ladoga has existed as a freshwater reservoir since at least 10.8 cal. ka BP. The δ18Odiatom values range from +29.8 to +35.0‰, and relatively higher δ18Odiatom values around +34.7‰ between c. 7.1 and 5.7 cal. ka BP are considered to reflect the Holocene Thermal Maximum. A continuous depletion in δ18Odiatom since c. 6.1 cal. ka BP accelerates after c. 4 cal. ka BP, indicating Middle to Late Holocene cooling that culminates during the interval 0.8–0.2 cal. ka BP, corresponding to the Little Ice Age. Lake‐level rises result in lower δ18Odiatom values, whereas lower lake levels cause higher δ18Odiatom values. The diatom isotope record gives an indication for a rather early opening of the Neva River outflow at c. 4.4–4.0 cal. ka BP. Generally, overall high δ18Odiatom values around +33.5‰ characterize a persistent evaporative lake system throughout the Holocene. As the Lake Ladoga δ18Odiatom record is roughly in line with the 60°N summer insolation, a linkage to broader‐scale climate change is likely

    Dynamics of seasonal patterns in geochemical, isotopic, and meteorological records of the elbrus region derived from functional data clustering

    Get PDF
    A nonparametric clustering method, the Bagging Voronoi K-Medoid Alignment algorithm, which simultaneously clusters and aligns spatially/temporally dependent  curves,  is applied to study various data series from the Elbrus  region (Central Caucasus). We used the algorithm to cluster annual curves obtained by smoothing of the following synchronous data series: titanium concentrations in varved (annually laminated) bottom sediments of proglacial  Lake Donguz-Orun;  an oxygen-18 isotope record in an ice core from Mt. Elbrus; temperature and precipitation observations with a monthly resolution from Teberda and Terskol meteorological stations. The data of different types were clustered independently. Due to restrictions concerned with the availability of meteorological data, we have fulfilled the clustering procedure separately for two periods: 1926–2010 and 1951–2010. The study is aimed to determine whether the instrumental period could be reasonably divided (clustered)  into several sub-periods using different climate and proxy time series; to examine the interpretability of the resulting borders of the clusters (resulting time periods); to study typical patterns of intra-annual variations of the data series. The results of clustering suggest that the precipitation and to a lesser degree titanium decadal-scale data may be reasonably grouped, while the temperature and oxygen-18 series are too short to form meaningful clusters; the intercluster boundaries show a notable degree of coherence between temperature and oxygen-18 data, and less between titanium and oxygen-18 as well as for precipitation series; the annual curves for titanium and partially precipitation data reveal much more pronounced intercluster  variability than the annual patterns of temperature and oxygen-18 data

    Pingo Nori (Spitsbergen) massive ice isotope and chemical content of permafrost core Grondalen 13

    No full text
    The drilling of the 10.5 m high Nori pingo that stands at 32 m asl in Grøndalen Valley (Spitsbergen) performed in April 2019 reached a depth of 21.8 m bs (core #13, starting from 42.5 m asl, 77.99483 °N, 14.59009 °E) and revealed 16.1 m thick massive ice. The core was obtained with a portable gasoline-powered rotary drilling rig (UKB 12/25, Vorovskiy Machine Factory, Ekaterinburg, Russia). The core pieces with diameter 112-76 mm were lifted for sampling to the surface every 30–50 cm. After documentation and cryolithological description core pieces were sealed in zip lock bags. Ice samples were split in two parts - one part for stable isotope analyses, another part for ion content measurement. They were kept frozen for transportation while sediment samples were kept unfrozen. Moisture content was analyzed in laboratory by measuring sediment samples weight before and after drying. The stable water isotope composition (δ18O and δD) of massive pingo ice was analyzed at the Climate and Environmental Research Laboratory (CERL, Arctic and Antarctic Research Institute, St. Petersburg, Russia) using a Picarro L2120- i analyzer. After every five samples the working standard (SPB-2, δ18O = -9.66 ‰ and δD = -74.1 ‰) was measured. SPB-2 is made of distilled St. Petersburg tap water and is calibrated against the International Atomic Energy Agency (IAEA) standards VSMOW-2 (Vienna Standard Mean Ocean Water 2), GISP (Greenland Ice Sheet Precipitation), and SLAP-2 (Standard Light Antarctic Precipitation 2). The reproducibility of the results is 0.08 ‰ for δ18O and 0.4 ‰ for δD and was assessed by re-measuring a random selection of 10% of the total samples. The measurement error is thus 1-2 orders of magnitude less than the natural isotopic variability of pingo ice, which is satisfactory for the purpose of this study. The δ18O and δD values are given as per mil (‰) difference to the VSMOW-2 standard. The deuterium excess (d) is calculated as d = δD - 8δ18O29. The ion content of sedimentary permafrost samples from core #13 was estimated after water extraction at the analytical laboratory of RAE-S, Barentsburg. The material was dried and sieved at 1 mm. About 20 g of the sediment were suspended in 100 ml of de-ionized water and filtered through 0.45 μm nylon mesh within 3 minutes after stirring. Electrical conductivity (EC, measured in μS cm-1) and pH values were estimated with a Mettler Toledo Seven Compact S 220. EC values were transformed automatically by the instrument into general ion content (mineralization) values given as mg L-1. Major anions and cations in the water extracts were analyzed by an ion chromatograph (Shimadzu LC-20 Prominence) equipped with the Shimadzu CDD-10AVvp conductometric detector and ion exchange columns for anions (Phenomenex Star-ion A300) and for cations (Shodex ICYS-50). Bicarbonate content was measured by a Shimadzu TOC-L analyzer via catalytic oxidizing at +680o C and subsequent infrared detecting. Melted pingo ice samples from core #13 and spring water samples were analyzed after filtration through 0.45 μm nylon mesh on the same equipment using the same techniques for pH, EC, and ion composition as for sedimentary permafrost samples. Analyses and research were aimed at determining major characteristics of the Nori pingo including its internal structure, groundwater source, and geochemical and isotopic stages of formation

    Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean

    No full text
    Stable water isotopologues (SWIs) are useful tracers of moist diabatic processes in the atmospheric water cycle. They provide a framework to analyse moist processes on a range of timescales from large-scale moisture transport to cloud formation, precipitation and small-scale turbulent mixing. Laser spectrometric measurements on research vessels produce high-resolution time series of the variability of the water vapour isotopic composition in the marine boundary layer. In this study, we present a 5-month continuous time series of such ship-based measurements of δ2H and δ18O from the Antarctic Circumnavigation Expedition (ACE) in the Atlantic and the Southern Ocean in the time period from November 2016 to April 2017. We analyse the drivers of meridional SWI variations in the marine boundary layer across diverse climate zones in the Atlantic and Southern Ocean using Lagrangian moisture source diagnostics and relate vertical SWI differences to near-surface wind speed and ocean surface state. The median values of δ18O, δ2H and deuterium excess during ACE decrease continuously from low to high latitudes. These meridional SWI distributions reflect climatic conditions at the measurement and moisture source locations, such as air temperature, specific humidity and relative humidity with respect to sea surface temperature. The SWI variability at a given latitude is highest in the extratropics and polar regions with decreasing values equatorwards. This meridional distribution of SWI variability is explained by the variability in moisture source locations and its associated environmental conditions as well as transport processes. The westward-located moisture sources of water vapour in the extratropics are highly variable in extent and latitude due to the frequent passage of cyclones and thus widen the range of encountered SWI values in the marine boundary layer. Moisture loss during transport further contributes to the high SWI variability in the extratropics. In the subtropics and tropics, persistent anticyclones lead to well-confined narrow easterly moisture source regions, which is reflected in the weak SWI variability in these regions. Thus, the expected range of SWI signals at a given latitude strongly depends on the large-scale circulation. Furthermore, the ACE SWI time series recorded at 8.0 and 13.5 m above the ocean surface provide estimates of vertical SWI gradients in the lowermost marine boundary layer. On average, the vertical gradients with height found during ACE are −0.1‰m−1 for δ18O, −0.5‰m−1 for δ2H and 0.3 ‰ m−1 for deuterium excess. Careful calibration and post-processing of the SWI data and a detailed uncertainty analysis provide a solid basis for the presented gradients. Using sea spray concentrations and sea state conditions, we show that the vertical SWI gradients are particularly large during high wind speed conditions with increased contribution of sea spray evaporation or during low wind speed conditions due to weak vertical turbulent mixing. Although further SWI measurements at a higher vertical resolution are required to validate these findings, the simultaneous SWI measurements at several heights during ACE show the potential of SWIs as tracers for vertical mixing and sea spray evaporation in the lowermost marine boundary layer

    Hydrological, meteorological observations and isotopes sampling results during 2019-2020 at Djankuat Glacier Station in the North Caucasus, Russia

    No full text
    This is an update of a dataset on the long-term complex glaciological, hydrological, meteorological observations and isotopes sampling in an extremely underreported alpine zone of the North Caucasus. The Djankuat research basin is of 9.1 km2, situated on elevations between 2500 – 4000 m, by 30% covered with glaciers. The biggest in the basin Djankuat glacier was chosen as representative of the central North Caucasus during the International Hydrological Decade and is one of 30 'reference' glaciers in the world that have annual mass-balance series longer than 50 years (Zemp et al, 2009). The original dataset covers 2007-2017, this update - 2019-2020. In total, the dataset contains the result of yearly measurements of snow thickness and density; dynamics of snow and ice melting; measurements of water runoff, conductivity, turbidity, temperature, δ18O, δ2H on the main gauging station with a one-hour or several-hours step depending on the parameter; data on δ18O and δ2H sampling of liquid precipitation, snow, ice, firn, groundwater in different parts of the watershed regularly in time during the melting season; precipitation amount, air temperature, relative humidity, shortwave incoming and reflected radiation, longwave downward and upward radiation, atmospheric pressure, wind speed and direction – measured on several automatic weather stations within the basin with 15 min – one-hour step; gradient meteorological measurements to estimate turbulent fluxes of heat and moisture, measuring three components of wind speed at a frequency of 10 hertz to estimate the turbulent impulse heat fluxes over the glacier surface by the eddy covariance method. The observations were held during ablation period June-October and were interrupted in winter. The dataset will be further updated. The dataset can be useful for developing and verifying hydrological, glaciological and meteorological models for high elevation territories, to study impact of climate change on hydrology of mountain regions, using isotopic and hydrochemical approaches to study mountain territories
    corecore