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ABSTRACT. A nonparametric clustering method, the Bagging Voronoi K-Medoid Alignment algorithm, which simultaneously 
clusters and aligns spatially/temporally dependent curves, is applied to study various data series from the Elbrus region 
(Central Caucasus). We used the algorithm to cluster annual curves obtained by smoothing of the following synchronous 
data series: titanium concentrations in varved (annually laminated) bottom sediments of proglacial Lake Donguz-Orun; an 
oxygen-18 isotope record in an ice core from Mt. Elbrus; temperature and precipitation observations with a monthly resolution 
from Teberda and Terskol meteorological stations. The data of different types were clustered independently. Due to restrictions 
concerned with the availability of meteorological data, we have fulfilled the clustering procedure separately for two periods: 
1926–2010 and 1951–2010. The study is aimed to determine whether the instrumental period could be reasonably divided 
(clustered) into several sub-periods using different climate and proxy time series; to examine the interpretability of the 
resulting borders of the clusters (resulting time periods); to study typical patterns of intra-annual variations of the data series. 
The results of clustering suggest that the precipitation and to a lesser degree titanium decadal-scale data may be reasonably 
grouped, while the temperature and oxygen-18 series are too short to form meaningful clusters; the intercluster boundaries 
show a notable degree of coherence between temperature and oxygen-18 data, and less between titanium and oxygen-18 as 
well as for precipitation series; the annual curves for titanium and partially precipitation data reveal much more pronounced 
intercluster variability than the annual patterns of temperature and oxygen-18 data.
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INTRODUCTION

 In the last decade, new paleoclimate archives were 
obtained in the course of expeditionary work involving 
the Institute of Geography of the Russian Academy of 
Sciences. Among them are ice cores of the Western plateau 
of Elbrus (Mikhalenko et al. 2015; Kozachek et al. 2017), 
bottom sediments of the lakes Karakel, Donguz-Orun, 
Khuko (Solomina et al. 2013; Alexandrin et al. 2018), etc. 
The obtained cores were studied and dated by laboratory 
methods; their elemental and isotopic compositions 
were determined (Darin et al. 2015a; Darin et al. 2015b;  
Kozachek et al. 2015). Until now, among the existing 

statistical approaches, mostly the correlation-regression 
and component analysis have been applied to study the 
new data (Alexandrin et al. 2018). Among the applications 
of cluster analysis to these data, only works on studying the 
backward air mass trajectories and dust transfer are known 
(Kutuzov et al. 2017; Khairedinova et al. 2017).
 Cluster analysis is used to split a certain set of objects 
into relatively homogeneous groups (clusters). In this work, 
the clustering procedure was applied independently to 
investigate several synchronous time series characterizing 
the dynamics of the natural environment in the Central 
Caucasus in the 20th century. As the result of this procedure, 
each time series is divided into intervals corresponding to 
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different clusters. Thus, a time sequence of clusters or parts 
of them appears in each data series.
 In our work a nonparametric method of clustering 
functional data, the Bagging Voronoi K-Medoid Alignment 
(BVKMA) algorithm, was applied to analyze the data. 
This clustering method and its application for studying 
bottom sediments are described in detail in (Abramowicz 
et al. 2017) and summarized in the Method section of our 
paper. A specific feature of this approach is that splitting 
annual data into clusters is based on the shape of intra-
annual variations of the parameter under investigation. In 
that way, the analysis is aimed at answering the question 
«which time periods are similar and which are different 
in terms of their intra-annual variability». This clustering 
method may be only applied to the data that have several 
measurements for each period.
 Moreover, the advantage of BVKMA compared to 
previously developed methods of clustering functional 
data is the ability of the method to deal jointly with two 
effects, revealing by data, that can lead the clustering 
procedure to a tendency of considering substantially 
similar or interconnected data as completely different or 
independent, what may be regarded as misclassification.
 The first issue is the effect of misalignment functional 
data that is typically manifested in time lags. For instance, 
if the functional data are represented as time-dependent 
curves, one can notice time lags of peaks of some curves 
compared to the others, despite a common shape and 
reasons of the observed variability (see, e.g., Sangalli et al. 
2010). The Alignment procedure, implemented in BVKMA, 
is intended to prevent possible misclassification of the 
curves during clustering due to their misalignment. In 
climatic research, the misalignment may naturally occur in 
annually repeated seasonal patterns.
 The second effect that is important to account for, is a 
possible time/spatial dependence of functional data. For 
example, the neighboring annual curves, derived from 
high resolution paleoclimatic records, may be regarded 
as «dependent» because they are supposed to reflect 
common processes and effects characterizing the natural 
environment of a given period. In BVKMA algorithm the 
account for data dependency, expressed by a tendency to 
attribute consecutive curves to the same cluster, is provided 
by the usage of the Voronoi tessellation (Abramowicz et al. 
2017). Also, the type of dependency (spatial or temporal) 
does not impose restrictions on the applicability of the 
method. Moreover, the spatial dependence observed for 
the parameter of interest in annual layers of proxy data can 
be transformed into temporal dependence on the base of 
known dating of the proxy. In our study, this is the case for 
lake sediment and ice core data.
 The main purpose of our investigation is to assess 
the degree of consistency of the resulting clusters for 
geochemical, isotopic and meteorological data series and 
to find out essential or close time boundaries in different 
series. This approach of combining various types of data in 
order to reveal their implicit interrelations may be a useful 
tool for creating paleoclimate reconstructions.
 In many palaeoclimatic studies, researchers aim to find 
modern analogues for past climates, and thus reconstruct 
specific parameters or palaeoenvironments for specific 
time periods. The clustering method used in this study 
previously was applied to cluster millennia-long time-
series, resulting in only one cluster covering the whole 
instrumental period. The results of such an approach 
could be hardly interpreted in terms of finding modern 
analogues for past climates. Here for the first time we apply 
this method for time-series which are several decades 

long and fully intersect with the instrumental period. The 
purpose of this approach is (i) to determine whether an 
instrumental period of usual length could be reasonably 
divided (clustered) into several sub-periods using this 
method and different climate and proxy time-series; (ii) to 
study the shape of medoids (which represent intra-annual 
variations of parameters) for different climate and proxy 
time-series and their associations; and (iii) to examine the 
resulting borders of the clusters, or resulting time periods, 
in terms of their interpretability.

MATERIALS AND METHODS
Study area

 The Greater Caucasus borders the Russian Plain from the 
south. It is located in the temperate and subtropical zones 
between the Black and Caspian Seas. Elbrus volcano (5642 
m) – the highest peak of the Caucasus, supports extensive 
modern glaciation. The climate in the region is dominated 
by the westerlies. The continentality is increasing from the 
west to east: the mean June temperature at the foothills 
of Greater Caucasus is approximately +23–24 °C, while in 
the east it is higher (25–29 °C): the annual precipitation, 
on the contrary, decreases in the west-east direction from 
4000 mm (Kodory valley) to 1000–1500 mm in the eastern 
Caucasus (Gvozdetsky and Golubchikov 1987). Precipitation 
maxima occur in July–September; the warmest month is 
July, the coldest one is January.
 Meteorological data at the high elevation of the 
Caucasus are quite scarce. In this paper, we used the 
data from Terskol station located in the area where 
our other proxies (ice core and lake sediments) are 
situated and Teberda station with longer meteorological 
records. Shahgedanova et al. (2014) noticed positive 
trends in summer temperature and precipitation of the 
accumulation period (October–April) recorded at the high-
elevation Terskol and Klukhorsky Pereval stations in the 
period between 1987 and 2010.The glaciers are however 
retreating since the early 20th century and the retreat rate 
is increasing.
 The study area and the locations of the proxy records 
and meteorological stations used as the sources of data are 
marked on the map below (Fig. 1).

Data
The following data were used in the work.
 a) Data on the elemental composition of the core of 
the annually laminated bottom sediments of Lake Donguz-
Orun. The top core used (160 mm) contains annual layers 
formed during the period 1922–2010 (Alexandrin et al. 
2018). Among the chemical elements present in the 
sample, the terrigenous element titanium (Ti) was selected 
for cluster analysis, because variations in its content 
correlate most strongly with the series of meteorological 
observations in the region (Alexandrin et al. 2018).
 b) The vertical profile of the oxygen isotope content 
(δ18O) in the ice cores of the Western plateau of Elbrus 
(depth – up to 182 m; dated part – from 1774 to 2013; see 
(Preunkert et al. 2019; Kutuzov et al. 2019)).
 c) Monthly data on average air temperature from 
observations at the Teberda (since 1926) and Terskol (since 
1951) weather stations.
 d) Monthly data on precipitation totals from 
observations at the above mentioned meteorological 
stations for the same periods.
For data (a) and (b), the vertical profiles were converted 
to a time distribution based on the known depth–age 
correspondence.
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 Clustering of annual curves was carried out separately 
for the following two periods.
1) 1926–2010 – the maximum period of time provided 
simultaneously by geochemical, isotopic and 
meteorological data. The Teberda weather station was 
selected as providing the longest series of observations in 
the region.
2) 1951–2010 – the period of observations at the Terskol 
weather station and the simultaneous availability of lake 
sediment and ice core data. The weather station Terskol 
was selected as the closest to Lake Donguz-Orun and Mt. 
Elbrus.
 In accordance with the designations introduced, below 
we will indicate the data type with a letter (a – d), and the 
study period with a number (1 or 2). For example, (a1) will 
denote the titanium data for 1926–2010.

Method

To study the data, we have applied a recently developed 
nonparametric method of clustering functional data, 
the Bagging Voronoi K-Medoid Alignment, which 
simultaneously clusters and aligns by phase the data 
elements (annual curves), using the information about the 
dependence (sequence) of these curves (Abramowicz et 
al. 2017). The method is a generalization of the previous 
Bagging Voronoi Clustering (Secchi et al. 2013), which does 
not handle misalignment of the data. All computations and 
analysis of the data are performed in the R programming 
language (R Core Team 2020).
 Preprocessing. From the time series representing our 
raw data, the associated functional form was reconstructed 
via a smoothing procedure. In order to do that, a series of 
each parameter (Ti, δ18O, temperature, precipitation) was 
divided into sub-series of observations for individual years. 
The annual data were centered with respect to their mean 
value. Without loss of information the yearly time scale was 
converted to a reference one by uniformly distributing the 

time instances on the interval [0, 1] (such that for each year 
the first time instance is associated to 0 and the last one to 1). 
Next, the centered annual data were normalized with respect 
to the maximum absolute value of the whole time series. 
Finally, after all previously described normalizations and 
transformations, a continuous function was reconstructed 
from each annual series by smoothing via a sum of the first 
few Fourier harmonics. Typically, we used from 5 to 9 Fourier 
basis functions depending on the stability or oscillations of 
the initial data. Thus, a series of annual curves was obtained 
for each parameter. This allowed us to apply the BVKMA 
algorithm designed for clustering functional data.
 Let us set out at a qualitative level the main stages of the 
BVKMA algorithm, following (Abramowicz et al. 2017), and 
the procedure for tuning its input parameters.
 For the sake of clarity, let us describe an input dataset 
as a rectangular array of numbers (matrix), organized as 
follows1. Each row of the array contains the sequential 
values of the parameter of interest, belonging to a particular 
year (annual curve). We will call any row of the array and 
the data contained in it as a site. For instance, in the case 
of the temperature data, the ith row contains the values 
of temperature during the ith year of the studied period, 
obtained by smoothing of 12 monthly observations at a 
meteorological station. Thanks to the Fourier smoothing, for 
each type of data we have increased the number of annual 
values up to 50. Therefore, each of our datasets contains 50 
columns. The number of rows N in our datasets is either 85 
or 60, depending on the number of years in the analyzed 
time period, starting either from 1926 or from 1951.
 The execution of the BVKMA proceeds in two phases – 
bootstrap phase and aggregation phase.
 Bootstrap phase. This three-step procedure is being 
applied to the same input data array a specified number 
of times B. The individual replications of this procedure are 
independent and their results are being saved.
 Step 1. Generation of a random Voronoi tessellation. At this 
step the data array is randomly divided into a given number n of 

Fig. 1. The study area. The map of the Elbrus region (Central Caucasus) with the marked locations of data sources: Lake 
Donguz-Orun, Mt. Elbrus, the weather stations Terskol and Teberda. Space image from Google Earth

1Note that for each parameter (Ti, δ18O, temperature, precipitation), each meteorological station (Teberda, Terskol), and each study 
period (1926–2010, 1951–2010) a separate dataset is formed and analyzed independently.
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sub-arrays (Voronoi cells). Each cell is a set of several consecutive 
sites. The cells can vary in size, since being formed randomly. 
This step demands an input parameter L=N/n – the expected 
number of sites within a Voronoi cell. Varying L, we change the 
measure of supposed dependence of annual data as preliminary 
information given to the algorithm.
 Step 2. Identification of local representatives (medoids) for each 
cell of the tessellation. First, the Alignment procedure is applied 
to annual curves (sites) of each cell. Then medoids are chosen as 
the curves in each cell which are the most similar to all the other 
aligned curves in the same cell. The similarity of the curves is 
determined by a metric (see below). As a result of this procedure, 
for each Voronoi cell a new 1-dimensional array (an additional 
annual curve, also called local representative) is created, which 
summarizes the information carried by all sites of the cell. So, 
having completed the second step, we have a set of Voronoi 
cells and a set of their local representatives – one for each cell.
 Step 3. Clustering of the local representatives, formed at the 
previous step. The number K of clusters is assigned a priori, before 
executing the algorithm, and the clustering algorithm used on 
the local representatives is the K-medoid algorithm. All clusters 
are being labeled, and the label of each cluster refers also to all 
local representatives forming it. Next, all sites of each Voronoi 
cell get the same cluster label as the one that was assigned to 
the local representative of this cell. Thus, after completion of 
this step, the entire initial data array will be divided into clusters. 
In other words, for each site it will be indicated which one of K 
clusters it belongs to.
 Aggregation phase. Since the Bootstrap phase is repeated 
B times, and every time a Voronoi tessellation is created 
randomly, the resulting cluster distributions are expected to be 
different. Thus, for each site (year) a frequency distribution of 
cluster assignments along the B replicates is provided. At the 
Aggregation phase these frequencies are calculated for each 
site, and the cluster label, which was encountered more often 
than others, is finally assigned to a site. As the result of this 
majority vote procedure the final partitioning of the data array 
into clusters is formed.
 Parameter selection. The above mentioned variables B, L, 
and K are the input parameters of the BVKMA algorithm.
In all runs of the algorithm we kept the number of bootstrap 
replications B equal to 1000. This value turned out to be sufficient 
to provide the robustness of the results.
 The expected length of a Voronoi cell L was varied significantly 
in order to encompass all possible numbers of Voronoi cells n. The 
inevitable restriction imposed by the algorithm on n is K+1≤n≤N, 
expressing the fact that the number of Voronoi cells should be 
greater than the number of clusters, but cannot exceed the 
number of sites in the dataset. Hence, using the equality L=N/n, 
one can easily derive the restrictions on it: 1≤L≤N/(K+1). Thus, 
for each number of clusters K we executed the algorithm with 
various possible values of the expected length of a Voronoi cell L. 

To determine the most adequate value of L we used the average 
entropy estimator implemented in BVKMA. The mean entropy 
Ē is the measure of the misclassification of the data during 
clustering. Therefore, the optimal value of L is the one, providing 
the minimum of Ē.
 We restricted the number of clusters K to be equal to 2, 3 
or 4. We have not enlarged this number because the amount 
of sites (years) is relatively small (maximum 85). To tune K, we 
applied another built-in estimator of the BVKMA algorithm – the 
so-called λ-criterion (for more details, see (Abramowicz et al. 
2017; Sangalli et al. 2010)). Again, the optimal value of K is the 
one, providing the minimum of λ.
 Thus, the way to find the optimal values of the parameters 
for each dataset was the following. First, for each K the optimal 
value of L was determined with the help of the entropy criterion. 
After that, we found the optimal number of clusters K, using the 
λ-criterion, among the cases of optimal values of L.
 The optimal values of the parameters and corresponding 
values of the statistical indicators, resulting from our analysis, are 
presented in Table 1.
 In addition to the numeric input parameters discussed 
above, for running BVKMA one has to set a metric to quantify 
the similarity between annual curves, and a family of warping 
functions necessary for the Alignment procedure. Our choice of 
these two functional parameters is the same as in (Abramowicz 
et al. 2017). Namely, we used the normalized L2-based distance as 
a metric, and the group of positive slope affine transformations 
as a family of warping functions. More details and definitions can 
be found in (Abramowicz et al. 2017; Vantini 2012).

RESULTS AND DISCUSSION

 As a result of applying the BVKMA algorithm to different 
types of data in the different studied cases, we have obtained 
either 2 or 3 clusters. Typically, the resulting cluster assignment 
led to one cluster less than the prescribed number K. This means 
that in the final year-by-year cluster assignment by majority vote 
one of the clusters never comes out as the modal one.
 The results of applying the algorithm are depicted in 
Fig. 2: the cluster distributions over time (left side), and the 
corresponding medoids of each cluster (right side). The medoids 
represent intra-annual variability of the data, thus the left end 
of each medoid corresponds to the beginning of the year, and 
the right end – to the end of the year. They may be shifted in 
the direction of the abscissa due to the Alignment procedure. 
The Alignment is essential in the process of clustering, thought 
it has no physical significance for representation of the 
resulting medoids. In fact, the medoid of the cluster is the most 
representative curve in the cluster transformed in abscissa as 
a result of the Alignment (shifted and stretched/compressed). 
Nevertheless, the overall shape of the curve, subjected to such 
transformation, is preserved.

Gleb A. Chernyakov, Valeria Vitelli et al. DYNAMICS OF SEASONAL PATTERNS IN GEOCHEMICAL ...

Case K L Ē λ

(a1) 3 20 0.71 0.48

(a2) 4 12 0.68 0.37

(b1) 3 10 0.61 0.93

(b2) 3 15 0.55 0.86

(c1) 4 12 0.61 0.81

(c2) 4 10 0.59 0.81

(d1) 2 15 0.60 0.45

(d2) 3 8 0.58 0.67

Table 1. The cases of optimal parameter selection and their numerical characteristics
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Fig. 2. The results of clustering of smoothed annual curves (left), and the corresponding medoids (right) for two study 
periods: 1926–2010 (1) and 1951–2010 (2). The clustered data are: titanium content in the bottom sediment core from 

Lake Donguz-Orun (a); oxygen-18 isotope content in the ice core from Elbrus (b); monthly average temperature at 
Teberda and Terskol weather stations (c); monthly sum of precipitation at the same weather stations (d). The colors of 

the medoids match the colors used in the diagrams of cluster distribution over time for each type of data
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 The data on titanium concentrations in the Donguz-
Orun sediment core show the most prominent inter-
cluster diversity (Fig. 2 (a1, a2, right)). In the original 
study by Alexandrin et al. (2018) titanium was related to 
precipitation, having significant correlation (r = 0.44) with 
annual precipitation measured at Teberda weather station. 
However, clustering fulfilled for the two parameters 
showed different results (Fig. 2 (a1, a2, d1, d2, left)). It 
might be related to mild correlation strength, but also to 
different factors driving intra-annual patterns of variability 
of two parameters. Titanium is sometimes claimed to 
mimic terrigenous runoff, and thus reflecting precipitation. 
However, precipitation during the cold season may 
generate runoff only in spring during snow melt, hence 
the intra-winter distribution of precipitation would not be 
related to the spring peak of runoff, but the total amount of 
precipitation in the winter will matter. Hence, we underline 
that the results of the BVKMA clustering algorithm 
should be always interpreted keeping in mind possible 
disagreement in intra-annual variability of interconnected 
parameters.
 On the contrary, the temperature and especially 
oxygen-18 records reveal similar and stable seasonal 
patterns (Fig. 2 (b1, b2, c1, c2, right)), and therefore the 
differences among clusters are less significant for these 
types of data. Temperature is known to have larger 
correlation distance than precipitation. In this regard, we 
cannot find a realistic explanation for different clustering 
results for temperature measured on two weather stations 
having similar results for precipitation. Hence we interpret 
these results as follows. The instrumental period may be not 
long enough to obtain reasonable clusters for a parameter 
with stable intra-annual variability, such as temperature.
Moreover, some inter-cluster time boundaries occur closely 
in timing for some series of data (Fig. 2): in the 1940s (b1, 
c1, left) and in the late 1960s (b2, c2, left).
 We also find very close inter-cluster boundaries in the 
titanium and oxygen-18 data (Fig. 2 (a1, b2, left)).
 The precipitation data series of meteorological stations 
Teberda and Terskol have a similar structure of cluster 
distributions over time: a large cluster encompassing 
most part of the studied period followed by a small cluster 
attributed to the latter period (Fig. 2 (d1, d2, left)).
 Intra-annual patterns revealed by the respective 
medoids (Fig. 2 (d1, d2, right)) also have a similarity: for 
both weather stations we can observe maximum values 
of precipitation in the middle of the season (summer) 
for the first period (green) and two local maxima (spring 
and autumn) with reduction in summer for the second 
period (magenta). These results show that, in contrast to 
very stable intra-annual variations of temperature, those 
of precipitation are variable enough to be reasonably 
clustered into several periods. The consistency of these 
periods for two remote weather stations may indicate that 
the results of the clustering catch common underlying 
forcing of changed precipitation seasonality in 2000s.
 Originally, the BVKMA algorithm was applied for a 6000-
year long varved sedimentary sequence (Abramowicz 
et al. 2017). It had proven to be suitable for registering 

centennial to millennial scale variations in the distribution 
of the seasonal values of the selected parameters, thus 
providing important paleoclimatic implications. In this 
study, we apply the BVKMA algorithm for significantly 
shorter sequences (60 and 85 years long). The climatic 
variations (temperature and precipitation) as well are their 
proxies (sedimentary Ti-values and ice core δ18O) at such a 
short time scale were obviously incomparably smaller than 
those for the half Holocene time span.
 The two-three clusters provided by the algorithm tend 
to represent minor fluctuations – especially clear with the 
curves of temperature and δ18O. A certain incoherence 
of the Ti-values can be attributed to the uncertainty of 
distinguishing the annual layers in varved sediments (done 
with the use of geochemical markers rather than direct 
visual observation in the case of Lake Donguz-Orun).
 On the time scale of centuries to millennia the physical 
basis for cluster analysis of the paleoclimatic data is 
much more robust. Application of the BVKMA algorithm 
for shorter sequences provides a necessary basis for its 
application for the longer ones that are expected for lake 
sediments, ice core data and possibly other sources of 
paleoclimatic information in the Caucasus.

CONCLUSIONS

 The seasonal patterns of four types of proxy and 
meteorological data series from the Elbrus region (Ti 
concentrations, δ18O, temperature, and precipitation) are 
derived by applying the clustering algorithm Bagging 
Voronoi K-Medoid Alignment, separately for two periods: 
1926–2010 and 1951–2010.
 The time dynamics of clusters and the corresponding 
cluster medoids are obtained.
 The seasonal patterns of oxygen-18 and temperature 
data occurred to be relatively similar and unchangeable.
 A notable degree of consistency of the resulting 
clusters and their time boundaries for oxygen-18 and 
temperature data is figured out. This result is encouraging 
for future attempts to define modern analogues of past 
climates using this clustering technique.
 A less pronounced, but still the observable consistency 
of the cluster distributions is found for Ti and O-18 data, 
as well as for precipitation data of meteorological stations 
Teberda and Terskol.
 Our results demonstrate that for parameters with 
relatively stable intra-annual patterns of variability (like 
temperature) the usual length of instrumental period may 
be not enough for its reasonable division into sub-periods. 
Highly variable parameters (like precipitation), on the 
contrary, may be reasonably clustered even inside several 
decades of data.
 Also, we underline that the results of the BVKMA 
clustering algorithm should be always interpreted keeping 
in mind possible disagreement in intra-annual variability 
of interconnected parameters, as we demonstrated in 
titanium data from Donguz-Orun sediment core and 
precipitation from Teberda weather station.
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