40 research outputs found

    Trilateral Perceptions of the Importance of Instructional Leadership Behaviors

    Get PDF
    Recognizing a global focus on principals to be proficient instructional leaders while meeting the demands of multiple responsibilities, this study seeks to investigate the perception of importance of research-based instructional leadership behavior functions through a triangulated lens of teacher candidates, teachers, and principals. This study aims to empirically investigate the level of perceived importance of job-related functions of the school principal by asking teacher candidates, teachers, and principals to appraise responsibilities of instructional leaders on a modified version of the Principal Instructional Management Rating Scale (PIMRS). Participants were 75 principals, 336 in-service teachers in South Dakota and Nebraska and 94 teacher candidates at six universities across South Dakota and Nebraska. The data reported in this article demonstrate that respondents consistently rated the behavior functions as important, but differed in their perceptions of importance. The data also imply a rank of importance that could be utilized as a priority list for a school principal

    ROCK1/2 signaling contributes to corticosteroid-refractory acute graft-versus-host disease

    Get PDF
    Patients with corticosteroid-refractory acute graft-versus-host disease (aGVHD) have a low one-year survival rate. Identification and validation of novel targetable kinases in patients who experience corticosteroid-refractory-aGVHD may help improve outcomes. Kinase-specific proteomics of leukocytes from patients with corticosteroid-refractory-GVHD identified rho kinase type 1 (ROCK1) as the most significantly upregulated kinase. ROCK1/2 inhibition improved survival and histological GVHD severity in mice and was synergistic with JAK1/2 inhibition, without compromising graft-versus-leukemia-effects. ROCK1/2-inhibition in macrophages or dendritic cells prior to transfer reduced GVHD severity. Mechanistically, ROCK1/2 inhibition or ROCK1 knockdown interfered with CD80, CD86, MHC-II expression and IL-6, IL-1β, iNOS and TNF production in myeloid cells. This was accompanied by impaired T cell activation by dendritic cells and inhibition of cytoskeletal rearrangements, thereby reducing macrophage and DC migration. NF-κB signaling was reduced in myeloid cells following ROCK1/2 inhibition. In conclusion, ROCK1/2 inhibition interferes with immune activation at multiple levels and reduces acute GVHD while maintaining GVL-effects, including in corticosteroid-refractory settings

    Type 1 Fimbriae, a Colonization Factor of Uropathogenic Escherichia coli, Are Controlled by the Metabolic Sensor CRP-cAMP

    Get PDF
    Type 1 fimbriae are a crucial factor for the virulence of uropathogenic Escherichia coli during the first steps of infection by mediating adhesion to epithelial cells. They are also required for the consequent colonization of the tissues and for invasion of the uroepithelium. Here, we studied the role of the specialized signal transduction system CRP-cAMP in the regulation of type 1 fimbriation. Although initially discovered by regulating carbohydrate metabolism, the CRP-cAMP complex controls a major regulatory network in Gram-negative bacteria, including a broad subset of genes spread into different functional categories of the cell. Our results indicate that CRP-cAMP plays a dual role in type 1 fimbriation, affecting both the phase variation process and fimA promoter activity, with an overall repressive outcome on fimbriation. The dissection of the regulatory pathway let us conclude that CRP-cAMP negatively affects FimB-mediated recombination by an indirect mechanism that requires DNA gyrase activity. Moreover, the underlying studies revealed that CRP-cAMP controls the expression of another global regulator in Gram-negative bacteria, the leucine-responsive protein Lrp. CRP-cAMP-mediated repression is limiting the switch from the non-fimbriated to the fimbriated state. Consistently, a drop in the intracellular concentration of cAMP due to altered physiological conditions (e.g. growth in presence of glucose) increases the percentage of fimbriated cells in the bacterial population. We also provide evidence that the repression of type 1 fimbriae by CRP-cAMP occurs during fast growth conditions (logarithmic phase) and is alleviated during slow growth (stationary phase), which is consistent with an involvement of type 1 fimbriae in the adaptation to stress conditions by promoting biofilm growth or entry into host cells. Our work suggests that the metabolic sensor CRP-cAMP plays a role in coupling the expression of type 1 fimbriae to environmental conditions, thereby also affecting subsequent attachment and colonization of host tissues

    Strain-Induced Self-Rolling of Electrochemically Deposited Co(OH)<sub>2</sub> Films into Organic–Inorganic Microscrolls

    No full text
    Strain-induced self-folding is a ubiquitous phenomenon in biology, but is rarely seen in brittle geological or synthetic inorganic materials. We here apply this concept for the preparation of three-dimensional free-standing microscrolls of cobalt hydroxide. Electrodeposition in the presence of structure-directing water-soluble polyelectrolytes interfering with solid precipitation is used to generate thin polymer/inorganic hybrid films, which undergo self-rolling upon drying. Mechanistically, we propose that heterogeneities with respect to the nanostructural motifs along the surface normal direction lead to substantial internal strain. A non-uniform response to the release of water then results in a bending motion of the two-dimensional Co(OH)2 layer accompanied by dewetting from the substrate. Pseudomorphic conversion into Co3O4 affords the possibility to generate hierarchically structured solids with inherent catalytic activity. Hence, we present an electrochemically controllable precipitation system, in which the biological concepts of organic matrix-directed mineralization and strain-induced self-rolling are combined and translated into a functional material

    Strain-Induced Self-Rolling of Electrochemically Deposited Co(OH)2 Films into Organic&ndash;Inorganic Microscrolls

    No full text
    Strain-induced self-folding is a ubiquitous phenomenon in biology, but is rarely seen in brittle geological or synthetic inorganic materials. We here apply this concept for the preparation of three-dimensional free-standing microscrolls of cobalt hydroxide. Electrodeposition in the presence of structure-directing water-soluble polyelectrolytes interfering with solid precipitation is used to generate thin polymer/inorganic hybrid films, which undergo self-rolling upon drying. Mechanistically, we propose that heterogeneities with respect to the nanostructural motifs along the surface normal direction lead to substantial internal strain. A non-uniform response to the release of water then results in a bending motion of the two-dimensional Co(OH)2 layer accompanied by dewetting from the substrate. Pseudomorphic conversion into Co3O4 affords the possibility to generate hierarchically structured solids with inherent catalytic activity. Hence, we present an electrochemically controllable precipitation system, in which the biological concepts of organic matrix-directed mineralization and strain-induced self-rolling are combined and translated into a functional material
    corecore