41 research outputs found

    Pressure control of magnetic clusters in strongly inhomogeneous ferromagnetic chalcopyrites

    Get PDF
    Room-temperature ferromagnetism in Mn-doped chalcopyrites is a desire aspect when applying those materials to spin electronics. However, dominance of high Curie-temperatures due to cluster formation or inhomogeneities limited their consideration. Here we report how an external perturbation such as applied hydrostatic pressure in CdGeP2:Mn induces a two serial magnetic transitions from ferromagnet to non-magnet state at room temperature. This effect is related to the unconventional properties of created MnP magnetic clusters within the host material. Such behavior is also discussed in connection with ab initio density functional calculations, where the structural properties of MnP indicate magnetic transitions as function of pressure as observed experimentally. Our results point out new ways to obtain controlled response of embedded magnetic clusters

    Rehabilitation proceedings in a patient with secondary degenerative changes of knee joints and extensive post-traumatic muscle dysfunction.

    No full text
    Praca stanowi studium przypadku 56 letniej pacjentki z powypadkową dysfunkcją mięśni grupy tylnej uda (mięśnia dwugłowego uda, mięśnia półścięgnistego i półbłoniastego) i aktualną chorobą zwyrodnieniową obu stawów kolanowych. W pierwszej części opisano chorobę zwyrodnieniową oraz anatomię stawu kolanowego, a także mięśnie wpływające na tą strukturę. Następnie przedstawiono krótką historię wypadku i rozłożony na przestrzeni kilku lat rozwój choroby zwyrodnieniowej stawów kolanowych. W pracy zawarto badanie oraz dokładny opis programu rehabilitacji pacjentki. Na końcu omówiono wyniki oraz podsumowano jak rehabilitacja wpłynęła na jakość życia badanej.The present work is a case study of 56 years old female patient with post-traumatic hamstring muscle dysfunction (biceps femoris muscle, semitendinosus muscle and semimembranosus muscle) and current osteoarthitis in both knee joints. The first part reviews osteoarthritis and anatomy, including the description of knee joint and muscles which influence its function. Secondly, a short story of the accident and development of osteoarthitis is presented. The practical part includes examination and a detailed program of rehabilitation of the patient. Finally, the results and the influence of physiotherapy on the quality of life is discussed

    Defect-free SnTe topological crystalline insulator nanowires grown by molecular beam epitaxy on graphene

    No full text
    SnTe topological crystalline insulator nanowires have been grown by molecular beam epitaxy on graphene/SiC substrates. The nanowires have a cubic rock-salt structure, they grow along the [001] crystallographic direction and have four sidewalls consisting of {100} crystal planes known to host metallic surface states with a Dirac dispersion. Thorough high resolution transmission electron microscopy investigations show that the nanowires grow on graphene in the van der Waals epitaxy mode induced when the catalyzing Au nanoparticles mix with Sn delivered from a SnTe flux, providing a liquid Au-Sn alloy. The nanowires are totally free from structural defects, but their {001} sidewalls are prone to oxidation, which points out the necessity of depositing a protective capping layer in view of exploiting the magneto-electric transport phenomena involving charge carriers occupying topologically protected states

    Gene-occupation interactions: a review of the literature on bladder and prostate cancer

    Get PDF
    Bladder cancer (BCa) and prostate cancer (PCa) are genitourinary cancers which constitute significant health problems in men and in which environmental factors play an important role. Understanding the genetic susceptibility to BCa or PCa and occupational exposure is paramount to improving cancer prevention and early detection. The aim of this review article was to address the scientific evidence on the genetic risk factors and occupational exposure associated with the occurrence of BCa and PCa. The authors identified relevant original articles that have been published between 1994 and 2023. Variations of the following search terms: “gene” and “occupational” combined with one of the following terms: “bladder cancer” or “prostate cancer” were applied for the search purpose. The authors found 342 publications of which 50 population studies met their requirements for gene-occupation interactions. In total, 34 full-text manuscripts were about BCa and 16 about PCa. These research examines the genes involved in detoxification processes of xenobiotics (glutathione S-transferase, N-acetyltransferase, cytochrome P450, UDP-glucuronosyltransferase), oxidative stress (glutathione peroxidase 1, manganese superoxide dismutase, catalase), altering DNA repair capacity (X-ray repair cross-complementing 1, base excision repair, nucleotide excision repair), tumour suppression ( TP53 gene), and vitamin D pathway (vitamin D receptor gene). The role of genetic factors in the occupational exposure has not been conclusively established, but it appears the possibility of genetic involvement. Determination of environmentally responsive genes provides important mechanistic implications for the etiology of occupational cancers, and valuable input in occupational exposure limits set by taking genetic susceptibility into account. More genetic research is needed to corroborate these findings and assess their significance in the workplace. Med Pr. 2023;74(2):127–4

    GaN Nanowire Array for Charge Transfer in Hybrid GaN/P3HT:PC71BM Photovoltaic Heterostructure Fabricated on Silicon

    No full text
    We demonstrate that a GaN nanowire array can be used for efficient charge transfer between the organic photovoltaic layer and silicon in a Si/GaN/P3HT:PC71BM inverted hybrid heterostructure. The band alignment of such a material combination is favorable to facilitate exciton dissociation, carrier separation and electron transport into Si. The ordered nature of the GaN array helps to mitigate the intrinsic performance limitations of the organic active layer. The dependence of photovoltaic performance enhancement on the morphology of the nanostructure with nanowire diameters 30, 50, 60, 100 and 150 nm was studied in detail. The short circuit current was enhanced by a factor of 4.25, while an open circuit voltage increase by 0.32 volts was achieved compared to similar planar layers

    Altered circadian genes expression in breast cancer tissue according to the clinical characteristics.

    No full text
    Breast cancer has a multifactorial etiology. One of the supposed and novel mechanisms is an alteration of circadian gene expression. Circadian genes play a crucial role in many physiological processes. These processes, such as genomic stability, DNA repair mechanism and apoptosis, are frequently disrupted in breast tumors. To assess the significance of circadian gene expression in breast cancer, we carried out an analysis of CLOCK, BMAL1, NPAS2, PER1, PER2, PER3 and CRY1, CRY2, TIMELESS, CSNK1E expression by the use of the quantitative Real-Time PCR technique in tumor tissue and non-tumor adjacent normal tissue sampled from 107 women with a newly diagnosed disease. The obtained data were compared to the clinical and histopathological features. PER1, PER2, PER3, CRY2 were found to be significantly down-expressed, while CLOCK, TIMELESS were over-expressed in the studied tumor samples compared to the non-tumor samples. Only gene expression of CRY1 was significantly down-regulated with progression according to the TNM classification. We found significantly decreased expression of CRY2, PER1, PER2 genes in the ER/PR negative breast tumors compared to the ER/PR positive tumors. Additionally, expression of CRY2, NPAS2 genes had a decreased level in the poorly differentiated tumors in comparison with the well and moderately differentiated ones. Our results indicate that circadian gene expression is altered in breast cancer tissue, which confirms previous observations from various animal and in vitro studies

    Role of Metallic Adlayer in Limiting Ge Incorporation into GaN

    No full text
    Atomically thin metal adlayers are used as surfactants in semiconductor crystal growth. The role of the adlayer in the incorporation of dopants in GaN is completely unexplored, probably because n-type doping of GaN with Si is relatively straightforward and can be scaled up with available Si atomic flux in a wide range of dopant concentrations. However, a surprisingly different behavior of the Ge dopant is observed, and the presence of atomically thin gallium or an indium layer dramatically affects Ge incorporation, hindering the fabrication of GaN:Ge structures with abrupt doping profiles. Here, we show an experimental study presenting a striking improvement in sharpness of the Ge doping profile obtained for indium as compared to the gallium surfactant layer during GaN-plasma-assisted molecular beam epitaxy. We show that the atomically thin indium surfactant layer promotes the incorporation of Ge in contrast to the gallium surfactant layer, which promotes segregation of Ge to the surface and Ge crystallite formation. Understanding the role of the surfactant is essential to control GaN doping and to obtain extremely high n-type doped III-nitride layers using Ge, because doping levels >1020 cm−3 are not easily available with Si

    Influence of Growth Polarity Switching on the Optical and Electrical Properties of GaN/AlGaN Nanowire LEDs

    No full text
    For the development and application of GaN-based nanowire structures, it is crucial to understand their fundamental properties. In this work, we provide the nano-scale correlation of the morphological, electrical, and optical properties of GaN/AlGaN nanowire light emitting diodes (LEDs), observed using a combination of spatially and spectrally resolved cathodoluminescence spectroscopy and imaging, electron beam-induced current microscopy, the nano-probe technique, and scanning electron microscopy. To complement the results, the photo- and electro-luminescence were also studied. The interpretation of the experimental data was supported by the results of numerical simulations of the electronic band structure. We characterized two types of nanowire LEDs grown in one process, which exhibit top facets of different shapes and, as we proved, have opposite growth polarities. We show that switching the polarity of nanowires (NWs) from the N- to Ga-face has a significant impact on their optical and electrical properties. In particular, cathodoluminescence studies revealed quantum wells emissions at about 3.5 eV, which were much brighter in Ga-polar NWs than in N-polar NWs. Moreover, the electron beam-induced current mapping proved that the p–n junctions were not active in N-polar NWs. Our results clearly indicate that intentional polarity inversion between the n- and p-type parts of NWs is a potential path towards the development of efficient nanoLED NW structures
    corecore