18 research outputs found

    The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency.

    Get PDF
    The TGFβ pathway has essential roles in embryonic development, organ homeostasis, tissue repair and disease. These diverse effects are mediated through the intracellular effectors SMAD2 and SMAD3 (hereafter SMAD2/3), whose canonical function is to control the activity of target genes by interacting with transcriptional regulators. Therefore, a complete description of the factors that interact with SMAD2/3 in a given cell type would have broad implications for many areas of cell biology. Here we describe the interactome of SMAD2/3 in human pluripotent stem cells. This analysis reveals that SMAD2/3 is involved in multiple molecular processes in addition to its role in transcription. In particular, we identify a functional interaction with the METTL3-METTL14-WTAP complex, which mediates the conversion of adenosine to N6-methyladenosine (m6A) on RNA. We show that SMAD2/3 promotes binding of the m6A methyltransferase complex to a subset of transcripts involved in early cell fate decisions. This mechanism destabilizes specific SMAD2/3 transcriptional targets, including the pluripotency factor gene NANOG, priming them for rapid downregulation upon differentiation to enable timely exit from pluripotency. Collectively, these findings reveal the mechanism by which extracellular signalling can induce rapid cellular responses through regulation of the epitranscriptome. These aspects of TGFβ signalling could have far-reaching implications in many other cell types and in diseases such as cancer.We thank Cambridge Genomic Services for help in next generation sequencing. The work was 203 supported by the European Research Council starting grant “Relieve IMDs” (L.V., S.B., A.B., 204 P.M.); the Cambridge University Hospitals National Institute for Health Research Biomedical 205 Research Center (L.V., J.K., A.S.L.); the Wellcome Trust PhD program (A.O., L.Y.); a British 206 Heart Foundation PhD studentship (FS/11/77/39327 to A.B.); a Grant-in-Aid for JSPS Fellows 207 (16J08005 to S.N.); and a core support grant from the Wellcome Trust and Medical Research 208 Council to the Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute

    Cholangiocyte organoids can repair bile ducts after transplantation in the human liver.

    Get PDF
    Organoid technology holds great promise for regenerative medicine but has not yet been applied to humans. We address this challenge using cholangiocyte organoids in the context of cholangiopathies, which represent a key reason for liver transplantation. Using single-cell RNA sequencing, we show that primary human cholangiocytes display transcriptional diversity that is lost in organoid culture. However, cholangiocyte organoids remain plastic and resume their in vivo signatures when transplanted back in the biliary tree. We then utilize a model of cell engraftment in human livers undergoing ex vivo normothermic perfusion to demonstrate that this property allows extrahepatic organoids to repair human intrahepatic ducts after transplantation. Our results provide proof of principle that cholangiocyte organoids can be used to repair human biliary epithelium

    The human embryo selection arena is associated with transposable element activity

    No full text
    International audienceOur current understanding of early human development is limited. A study in PLOS Biology found a previously undefined group of cells that diverges from the main lineages and undergo apoptosis through the activity of young transposable elements

    The human embryo selection arena is associated with transposable element activity

    No full text
    Our current understanding of early human development is limited. A study in PLOS Biology found a previously undefined group of cells that diverges from the main lineages and undergo apoptosis through the activity of young transposable elements

    Epigenetic and transcriptional regulations prime cell fate before division during human pluripotent stem cell differentiation.

    Get PDF
    Funder: Federation of European Biochemical SocietiesStem cells undergo cellular division during their differentiation to produce daughter cells with a new cellular identity. However, the epigenetic events and molecular mechanisms occurring between consecutive cell divisions have been insufficiently studied due to technical limitations. Here, using the FUCCI reporter we developed a cell-cycle synchronised human pluripotent stem cell (hPSC) differentiation system for uncovering epigenome and transcriptome dynamics during the first two divisions leading to definitive endoderm. We observed that transcription of key differentiation markers occurs before cell division, while chromatin accessibility analyses revealed the early inhibition of alternative cell fates. We found that Activator protein-1 members controlled by p38/MAPK signalling are necessary for inducing endoderm while blocking cell fate shifting toward mesoderm, and that enhancers are rapidly established and decommissioned between different cell divisions. Our study has practical biomedical utility for producing hPSC-derived patient-specific cell types since p38/MAPK induction increased the differentiation efficiency of insulin-producing pancreatic beta-cells

    Method to Synchronize Cell Cycle of Human Pluripotent Stem Cells without Affecting Their Fundamental Characteristics

    Get PDF
    Summary: Cell cycle progression and cell fate decisions are closely linked in human pluripotent stem cells (hPSCs). However, the study of these interplays at the molecular level remains challenging due to the lack of efficient methods allowing cell cycle synchronization of large quantities of cells. Here, we screened inhibitors of cell cycle progression and identified nocodazole as the most efficient small molecule to synchronize hPSCs in the G2/M phase. Following nocodazole treatment, hPSCs remain pluripotent, retain a normal karyotype and can successfully differentiate into the three germ layers and functional cell types. Moreover, genome-wide transcriptomic analyses on single cells synchronized for their cell cycle and differentiated toward the endoderm lineage validated our findings and showed that nocodazole treatment has no effect on gene expression during the differentiation process. Thus, our synchronization method provides a robust approach to study cell cycle mechanisms in hPSCs. : In this study, Vallier and colleagues show that small molecule cell cycle inhibitors can be used to successfully synchronize and enrich hPSCs in different cell cycle phases. Particularly, the G2/M inhibitor nocodazole successfully enriched cells in G2/M, G1, and S phases of the cell cycle, without affecting pluripotency and differentiation capacity as shown by molecular and genome-wide single-cell RNA-seq analyses. Keywords: hPSCs, cell cycle, nocodazole, cell cycle synchronization, single-cell RNA-seq, mesoderm, endoderm, ectoder

    TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells.

    No full text
    Funder: Cambridge Hospitals National Institute for Health Research Biomedical Research CenterFunder: Gates Cambridge TrustFunder: Department of HealthThe signalling pathways that maintain primed human pluripotent stem cells (hPSCs) have been well characterised, revealing a critical role for TGFβ/Activin/Nodal signalling. In contrast, the signalling requirements of naive human pluripotency have not been fully established. Here, we demonstrate that TGFβ signalling is required to maintain naive hPSCs. The downstream effector proteins - SMAD2/3 - bind common sites in naive and primed hPSCs, including shared pluripotency genes. In naive hPSCs, SMAD2/3 additionally bind to active regulatory regions near to naive pluripotency genes. Inhibiting TGFβ signalling in naive hPSCs causes the downregulation of SMAD2/3-target genes and pluripotency exit. Single-cell analyses reveal that naive and primed hPSCs follow different transcriptional trajectories after inhibition of TGFβ signalling. Primed hPSCs differentiate into neuroectoderm cells, whereas naive hPSCs transition into trophectoderm. These results establish that there is a continuum for TGFβ pathway function in human pluripotency spanning a developmental window from naive to primed states
    corecore