15 research outputs found

    Adeno-associated virus mediated delivery of Tregitope 167 ameliorates experimental colitis

    Get PDF
    Aim: To explore the anti-inflammatory potential of adeno-associated virus-mediated delivery of Tregitope 167 in an experimental colitis model. Methods: The trinitrobenzene sulfonate (TNBS) model of induced colitis was used in Balb/c mice. Subsequently after intravenous adeno-associated virus-mediated regulatory T-cell epitopes (Tregitope) delivery, acute colitis was initiated by intra-rectal administration of 1.5 mg TNBS in 40% ethanol followed by a second treatment with TNBS (0.75 mg in 20% ethanol) 8 d later. Control groups included mice not treated with TNBS (healthy control group) and mice treated by TNBS only (diseased group). At the time of sacrifice colon weight, the disease activity index and histology damage score were determined. Immunohistochemical staining of the colonic tissues was performed to asses the cellular infiltrate and the presence of transcription factor forkhead Box-P3 (Foxp3). Thymus, mesenteric lymph nodes, liver and spleen tissue were collected and the corresponding lymphocyte populations were further assessed by flow cytometry analysis for the expression of CD4+ T cell and regulatory T cell associated markers. Results: The Tregitope 167 treated mice gained an average of 4% over their initial body weight at the time of sacrifice. In contrast, the mice treated with TNBS alone (no Tregitope) developed colitis, and lost 4% of their initial body weight at the time of sacrifice (P \u3c 0.01). The body weight increase that had been observed in the mice pre-treated with Tregitope 167 was substantiated by a lower disease activity index and a decreased colon weight as compared to the diseased control group (P \u3c 0.01 and P \u3c 0.001, respectively). Immunohistochemical staining of the colonic tissues for CD4+ showed that inflammatory cell infiltrates were present in TNBS treated mice with or without administration with tregitope 167 and that these cellular infiltrates consisted mainly of CD4+ cells. For both TNBS treated groups CD4+ T cell infiltrates were observed in the sub-epithelial layer and the lamina propria. CD4+ T cell infiltrates were also present in the muscularis mucosa layer of the diseased control mice, but were absent in the Tregitope 167 treated group. Numerous Foxp3 positive cells were detected in the lamina propria and sub-epithelium of the colon sections from mice treated with Tregitope 167. Furthermore, the Foxp3 and glycoprotein A repetitions predominant markers were significantly increased in the CD4+ T lymphocyte population in the thymus of the mice pre-treated with adeno-associated virus serotype 5 (cytomegalovirus promoter-Tregitope 167), as cytomegalovirus promoter compared to lymphocyte populations in the thymus of diseased and the healthy control mice (P \u3c 0.05 and P \u3c 0.001, respectively). Conclusion: This study identifies adeno-associated virus-mediated delivery of regulatory T-cell epitope 167 as a novel anti-inflammatory approach with the capacity to decrease intestinal inflammation and induce long-term remission in inflammatory bowel disease

    Governing Antimicrobial Resistance (AMR) in a Changing Climate: A Participatory Scenario Planning Approach Applied to Sweden in 2050

    Get PDF
    Background: Antimicrobial resistance (AMR) is a growing global crisis with long-term and unpredictable health, social and economic impacts, with which climate change is likely to interact. Understanding how to govern AMR amidst evolving climatic changes is critical. Scenario planning offers a suitable approach. By envisioning alternative futures, stakeholders more effectively can identify consequences, anticipate problems, and better determine how to intervene. This study explored future worlds and actions that may successfully address AMR in a changing climate in a high-income country, using Sweden as the case.Methods: We conducted online scenario-building workshops and interviews with eight experts who explored: (1) how promising interventions (taxation of antimicrobials at point of sale, and infection prevention measures) could each combat AMR in 2050 in Sweden given our changing climate; and (2) actions to take starting in 2030 to ensure success in 2050. Transcripts were thematically analyzed to produce a narrative of participant validated alternative futures.Results: Recognizing AMR to be a global problem requiring global solutions, participants looked beyond Sweden to construct three alternative futures: (1) “Tax Burn Out” revealed taxation of antimicrobials as a low-impact intervention that creates inequities and thus would fail to address AMR without other interventions, such as infection prevention measures. (2) “Addressing the Basics” identified infection prevention measures as highly impactful at containing AMR in 2050 because they would contribute to achieving the Sustainable Development Goals (SDGs), which would be essential to tackling inequities underpinning AMR and climate change, and help to stabilize climate-induced mass migration and conflicts; and (3) ”Siloed Nations” described a movement toward nationalism and protectionism that would derail the “Addressing the Basics” scenario, threatening health and wellbeing of all. Several urgent actions were identified to combat AMR long-term regardless which future un-folds, such as global collaboration, and a holistic approach where AMR and climate change are addressed as interlinked issues.Conclusion: Our participatory scenario planning approach enabled participants from different sectors to create shared future visions and identify urgent actions to take that hinge on global collaboration, addressing AMR and climate change together, and achieving the SDGs to combat AMR under a changing climate

    Factors influencing antimicrobial resistance in the European food system and potential leverage points for intervention: A participatory, One Health study

    Get PDF
    Introduction Antimicrobial resistance (AMR) is a global crisis that evolves from a complex system of factors. Understanding what factors interact is key to finding solutions. Our objective was to identify the factors influencing AMR in the European food system and places to intervene. Materials and methods We conducted two workshops involving participants with diverse perspectives to identify the factors influencing AMR and leverage points (places) to target interventions. Transcripts were open coded for factors and connections, then transcribed into Vensim 8.0.4 to develop a causal loop diagram (CLD) and compute the number of feedback loops. Thematic analysis followed to describe AMR dynamics in Europe’s food system and places for intervention. The CLD and themes were confirmed via participant feedback. Results Seventeen participants representing human, animal and agricultural sectors identified 91 CLD factors and 331 connections. Seven themes (e.g., social and economic conditions) describing AMR dynamics in Europe’s food system, five ‘overarching factors’ that impact the entire CLD system (e.g., leadership) and fourteen places for intervention (e.g., consumer demand) emerged from workshop discussions. Most leverage points fell on highly networked feedback loops suggesting that intervening at these places may create unpredictable consequences. Conclusions Our study produced a CLD of factors influencing AMR in Europe’s food system that implicates sectors across the One Health spectrum. The high connectivity between the CLD factors described by participants and our finding that factors are connected with many feedback mechanisms underscores the complexity of the AMR problem and the challenge with finding long-term solutions. Identifying factors and feedbacks helped identify relevant leverage points in the system. Some actions, such as government’s setting AMU standards may be easier to implement. These actions in turn can support multi-pronged actions that can help redefine the vision, values and goals of the system to sustainably tackle AMR

    Factors impacting antimicrobial resistance in the South East Asian food system and potential places to intervene: A participatory, one health study

    Get PDF
    BackgroundWith AMU projected to increase, South East Asia (SEA) is at high risk of experiencing disproportionate health, social, and economic burdens due to antimicrobial resistance (AMR). Our objective was to identify factors influencing AMR in SEA’s food system and places for intervention by integrating the perspectives of experts from the region to inform policy and management decisions.Materials and methodsWe conducted two 6.5 h workshops and two 90-min interviews involving 18 AMR and other disciplinary experts from human, animal, and environment sectors who brainstormed the factors influencing AMR and identified leverage points (places) for intervention. Transcripts and workshop materials were coded for factors and their connections and transcribed into a causal loop diagram (CLD). Thematic analysis described AMR dynamics in SEA’s food system and leverage points for intervention. The CLD and themes were confirmed via participant feedback.ResultsParticipants constructed a CLD of AMR in the SEA food system that contained 98 factors interlinked by 362 connections. CLD factors reflected eight sub-areas of the SEA food system (e.g., government). Seven themes [e.g., antimicrobial and pesticide use and AMR spread (n = 40 quotes)], six “overarching factors” that impact the entire AMR system [e.g., the drive to survive (n = 12 quotes)], and 10 places for intervention that target CLD factors (n = 5) and overarching factors (n = 2) emerged from workshop discussions.ConclusionThe participant derived CLD of factors influencing AMR in the SEA food system demonstrates that AMR is a product of numerous interlinked actions taken across the One Health spectrum and that finding solutions is no simple task. Developing the model enabled the identification of potentially promising leverage points across human, animal, and environment sectors that, if comprehensively targeted using multi-pronged interventions, could evoke system wide changes that mitigate AMR. Even targeting some leverage points for intervention, such as increasing investments in research and capacity building, and setting and enforcing regulations to control antimicrobial supply, demand, and use could, in turn, shift mindsets that lead to changes in more difficult to alter leverage points, such as redefining the profit-driven intent that drives system behavior in ways that transform AMU and sustainably mitigate AMR

    Gene and cell therapy based treatment strategies for inflammatory bowel diseases

    No full text
    Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders most commonly affecting young adults. Currently available therapies can result in induction and maintenance of remission, but are not curative and have sometimes important side effects. Advances in basic research in IBD have provided new therapeutic opportunities to target the inflammatory process involved. Gene and cell therapy approaches are suitable to prevent inflammation in the gastrointestinal tract and show therefore potential in the treatment of IBD. In this review, we present the current progress in the field of both gene and cell therapy and future prospects in the context of IBD. Regarding gene therapy, we focus on viral vectors and their applications in preclinical models. The focus for cell therapy is on regulatory T lymphocytes and mesenchymal stromal cells, their potential for the treatment of IBD and the progress made in both preclinical models and clinical trials

    Factors influencing antimicrobial resistance in food systems & recommendations for long-term governance under à changing climate - Research brief

    No full text
    ▪ AMR development, spread and impact are driven by a complex web of factors that span, human, animal, agriculture, and environment sectors. ▪ Reducing AMR and AMR impacts requires multi-pronged interventions that target human, animal, agriculture, and environment sectors and planning for unintended health, social or economic consequences. ▪ Interventions that address AMR and climate change together, achieve the Sustainable Development Goals and are underpinned by multistakeholder participation and global collaboration are essential to mitigating AMR. ▪ An urgent need to act NOW or the fight against AMR will be lost

    Building Social-Ecological System Resilience to Tackle Antimicrobial Resistance Across the One Health Spectrum: Protocol for a Mixed Methods Study

    No full text
    Background Antimicrobial resistance (AMR) is an escalating global crisis with serious health, social, and economic consequences. Building social-ecological system resilience to reduce AMR and mitigate its impacts is critical. Objective The aim of this study is to compare and assess interventions that address AMR across the One Health spectrum and determine what actions will help to build social and ecological capacity and readiness to sustainably tackle AMR. Methods We will apply social-ecological resilience theory to AMR in an explicit One Health context using mixed methods and identify interventions that address AMR and its key pressure antimicrobial use (AMU) identified in the scientific literature and in the gray literature using a web-based survey. Intervention impacts and the factors that challenge or contribute to the success of interventions will be determined, triangulated against expert opinions in participatory workshops and complemented using quantitative time series analyses. We will then identify indicators using regression modeling, which can predict national and regional AMU or AMR dynamics across animal and human health. Together, these analyses will help to quantify the causal loop diagrams (CLDs) of AMR in the European and Southeast Asian food system contexts that are developed by diverse stakeholders in participatory workshops. Then, using these CLDs, the long-term impacts of selected interventions on AMR will be explored under alternate future scenarios via simulation modeling and participatory workshops. A publicly available learning platform housing information about interventions on AMR from a One Health perspective will be developed to help decision makers identify promising interventions for application in their jurisdictions. Results To date, 669 interventions have been identified in the scientific literature, 891 participants received a survey invitation, and 4 expert feedback and 4 model-building workshops have been conducted. Time series analysis, regression modeling of national and regional indicators of AMR dynamics, and scenario modeling activities are anticipated to be completed by spring 2022. Ethical approval has been obtained from the University of Waterloo's Office of Research Ethics (ethics numbers 40519 and 41781). Conclusions This paper provides an example of how to study complex problems such as AMR, which require the integration of knowledge across sectors and disciplines to find sustainable solutions. We anticipate that our study will contribute to a better understanding of what actions to take and in what contexts to ensure long-term success in mitigating AMR and its impact and provide useful tools (eg, CLDs, simulation models, and public databases of compiled interventions) to guide management and policy decisions. International Registered Report Identifier (IRRID) DERR1-10.2196/24378 </sec

    Factors impacting antimicrobial resistance in the South East Asian food system and potential places to intervene: A participatory, one health study

    No full text
    Background With AMU projected to increase, South East Asia (SEA) is at high risk of experiencing disproportionate health, social, and economic burdens due to antimicrobial resistance (AMR). Our objective was to identify factors influencing AMR in SEA’s food system and places for intervention by integrating the perspectives of experts from the region to inform policy and management decisions. Materials and methods We conducted two 6.5 h workshops and two 90-min interviews involving 18 AMR and other disciplinary experts from human, animal, and environment sectors who brainstormed the factors influencing AMR and identified leverage points (places) for intervention. Transcripts and workshop materials were coded for factors and their connections and transcribed into a causal loop diagram (CLD). Thematic analysis described AMR dynamics in SEA’s food system and leverage points for intervention. The CLD and themes were confirmed via participant feedback. Results Participants constructed a CLD of AMR in the SEA food system that contained 98 factors interlinked by 362 connections. CLD factors reflected eight sub-areas of the SEA food system (e.g., government). Seven themes [e.g., antimicrobial and pesticide use and AMR spread ( n = 40 quotes)], six “overarching factors” that impact the entire AMR system [e.g., the drive to survive ( n = 12 quotes)], and 10 places for intervention that target CLD factors ( n = 5) and overarching factors ( n = 2) emerged from workshop discussions. Conclusion The participant derived CLD of factors influencing AMR in the SEA food system demonstrates that AMR is a product of numerous interlinked actions taken across the One Health spectrum and that finding solutions is no simple task. Developing the model enabled the identification of potentially promising leverage points across human, animal, and environment sectors that, if comprehensively targeted using multi-pronged interventions, could evoke system wide changes that mitigate AMR. Even targeting some leverage points for intervention, such as increasing investments in research and capacity building, and setting and enforcing regulations to control antimicrobial supply, demand, and use could, in turn, shift mindsets that lead to changes in more difficult to alter leverage points, such as redefining the profit-driven intent that drives system behavior in ways that transform AMU and sustainably mitigate AMR.</p
    corecore