90 research outputs found
Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth
In the developing nervous system, Id2 (inhibitor of DNA binding 2, also known as inhibitor of differentiation 2) enhances cell proliferation, promotes tumour progression and inhibits the activity of neurogenic basic helix\u2013loop\u2013helix (bHLH) transcrip- tion factors1,2. The anaphase promoting complex/cyclosome and its activator Cdh1 (APC/CCdh1) restrains axonal growth but the targets of APC/CCdh1 in neurons are unknown3\u20135. Id2 and other members of the Id family are very unstable proteins that are eliminated as cells enter the quiescent state, but how they are targeted for degradation has remained elusive6,7. Here we show that Id2 interacts with the core subunits of APC/C and Cdh1 in primary neurons. APC/CCdh1 targets Id2 for degradation through a destruction box motif (D box) that is conserved in Id1 and Id4. Depletion of Cdh1 stabilizes Id proteins in neurons, whereas Id2 D-box mutants are impaired for Cdh1 binding and remain stable in cells that exit from the cell cycle and contain active APC/CCdh1. Mutants of the Id2 D box enhance axonal growth in cerebellar granule neurons in vitro and in the context of the cerebellar cortex, and overcome the myelin inhibitory signals for growth. Conversely, activation of bHLH transcription factors induces a cluster of genes with potent axonal inhibitory functions including the gene coding for the Nogo receptor, a key transducer of myelin inhibition. Degradation of Id2 in neurons permits the accumu- lation of the Nogo receptor, thereby linking APC/CCdh1 activity with bHLH target genes for the inhibition of axonal growth. These findings indicate that deregulated Id activity might be useful to reprogramme quiescent neurons into the axonal growth mode
RT-PCR assay to detect FGFR3::TACC3 fusions in formalin-fixed, paraffin-embedded glioblastoma samples.
BACKGROUND: One targeted treatment option for isocitrate dehydrogenase ( IDH)-wild-type glioblastoma focuses on tumors with fibroblast growth factor receptor 3::transforming acidic coiled-coil-containing protein 3 ( FGFR3::TACC3) fusions. FGFR3::TACC3 fusion detection can be challenging, as targeted RNA next-generation sequencing (NGS) is not routinely performed, and immunohistochemistry is an imperfect surrogate marker. Fusion status can be determined using reverse transcription polymerase chain reaction (RT-PCR) on fresh frozen (FF) material, but sometimes only formalin-fixed, paraffin-embedded (FFPE) tissue is available. AIM: To develop an RT-PCR assay to determine FGFR3::TACC3 status in FFPE glioblastoma samples. METHODS: Twelve tissue microarrays with 353 historical glioblastoma samples were immunohistochemically stained for FGFR3. Samples with overexpression of FGFR3 ( n  = 13) were subjected to FGFR3::TACC3 RT-PCR on FFPE, using 5 primer sets for the detection of 5 common fusion variants. Fusion-negative samples were additionally analyzed with NGS ( n  = 6), FGFR3 Fluorescence In Situ Hybridization ( n  = 6), and RNA sequencing ( n  = 5). RESULTS: Using RT-PCR on FFPE material of the 13 samples with FGFR3 overexpression, we detected an FGFR3::TACC3 fusion in 7 samples, covering 3 different fusion variants. For 5 of these FF was available, and the presence of the fusion was confirmed through RT-PCR on FF. With RNA sequencing, 1 additional sample was found to harbor an FGFR3::TACC3 fusion (variant not covered by current RT-PCR for FFPE). The frequency of FGFR3::TACC3 fusion in this cohort was 9/353 (2.5%). CONCLUSIONS: RT-PCR for FGFR3::TACC3 fusions can successfully be performed on FFPE material, with a specificity of 100% and (due to limited primer sets) a sensitivity of 83.3%. This assay allows for the identification of potential targeted treatment options when only formalin-fixed tissue is available
<i>HUWE1</i> is a critical colonic tumour suppressor gene that prevents MYC signalling, DNA damage accumulation and tumour initiation
Cancer genome sequencing projects have identified hundreds of genetic alterations, often at low frequencies, raising questions as to their functional relevance. One exemplar gene is HUWE1, which has been found to be mutated in numerous studies. However, due to the large size of this gene and a lack of functional analysis of identified mutations, their significance to carcinogenesis is unclear. To determine the importance of HUWE1, we chose to examine its function in colorectal cancer, where it is mutated in up to 15 per cent of tumours. Modelling of identified mutations showed that they inactivate the E3 ubiquitin ligase activity of HUWE1. Genetic deletion of Huwe1 rapidly accelerated tumourigenic in mice carrying loss of the intestinal tumour suppressor gene Apc, with a dramatic increase in tumour initiation. Mechanistically, this phenotype was driven by increased MYC and rapid DNA damage accumulation leading to loss of the second copy of Apc. The increased levels of DNA damage sensitised Huwe1-deficient tumours to DNA-damaging agents and to deletion of the anti-apoptotic protein MCL1. Taken together, these data identify HUWE1 as a bona fide tumour suppressor gene in the intestinal epithelium and suggest a potential vulnerability of HUWE1-mutated tumours to DNA-damaging agents and inhibitors of anti-apoptotic proteins
The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein
Development of the nervous system requires that timely withdrawal from the cell cycle be coupled with initiation of differentiation. Ubiquitin-mediated degradation of the N-Myc oncoprotein in neural stem/progenitor cells is thought to trigger the arrest of proliferation and begin differentiation. Here we report that the HECT-domain ubiquitin ligase Huwe1 ubiquitinates the N-Myc oncoprotein through Lys 48-mediated linkages and targets it for destruction by the proteasome. This process is physiologically implemented by embryonic stem (ES) cells differentiating along the neuronal lineage and in the mouse brain during development. Genetic and RNA interference-mediated inactivation of the Huwe1 gene impedes N-Myc degradation, prevents exit from the cell cycle by opposing the expression of Cdk inhibitors and blocks differentiation through persistent inhibition of early and late markers of neuronal differentiation. Silencing of N-myc in cells lacking Huwe1 restores neural differentiation of ES cells and rescues cell-cycle exit and differentiation of the mouse cortex, demonstrating that Huwe1 restrains proliferation and enables neuronal differentiation by mediating the degradation of N-Myc. These findings indicate that Huwe1 links destruction of N-Myc to the quiescent state that complements differentiation in the neural tissue
The Epigenetic Evolution of Glioma Is Determined by the IDH1 Mutation Status and Treatment Regimen
Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histologic progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neoangiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution toward an IDHwt-like phenotype.</p
The Epigenetic Evolution of Glioma Is Determined by the IDH1 Mutation Status and Treatment Regimen
Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histologic progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neoangiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution toward an IDHwt-like phenotype
Control of chromosome stability by the \u3b2-TrCP\u2013REST\u2013Mad2 axis
REST/NRSF (repressor-element-1-silencing transcription factor/ neuron-restrictive silencing factor) negatively regulates the tran- scription of genes containing RE1 sites1,2. REST is expressed in non-neuronal cells and stem/progenitor neuronal cells, in which it inhibits the expression of neuron-specific genes. Overexpression of REST is frequently found in human medulloblastomas and neuroblastomas3\u20137, in which it is thought to maintain the stem character of tumour cells. Neural stem cells forced to express REST and c-Myc fail to differentiate and give rise to tumours in the mouse cerebellum3. Expression of a splice variant of REST that lacks the carboxy terminus has been associated with neuronal tumours and small-cell lung carcinomas8\u201310, and a frameshift mutant (REST-FS), which is also truncated at the C terminus, has oncogenic properties11. Here we show, by using an unbiased screen, that REST is an interactor of the F-box protein b-TrCP. REST is degraded by means of the ubiquitin ligase SCFb-TrCP dur- ing the G2 phase of the cell cycle to allow transcriptional derepres- sion of Mad2, an essential component of the spindle assembly checkpoint. The expression in cultured cells of a stable REST mutant, which is unable to bind b-TrCP, inhibited Mad2 expres- sion and resulted in a phenotype analogous to that observed in Mad21/2 cells. In particular, we observed defects that were con- sistent with faulty activation of the spindle checkpoint, such as shortened mitosis, premature sister-chromatid separation, chro- mosome bridges and mis-segregation in anaphase, tetraploidy, and faster mitotic slippage in the presence of a spindle inhibitor. An indistinguishable phenotype was observed by expressing the oncogenic REST-FS mutant11, which does not bind b-TrCP. Thus, SCFb-TrCP-dependent degradation of REST during G2 permits the optimal activation of the spindle checkpoint, and consequently it is required for the fidelity of mitosis. The high levels of REST or its truncated variants found in certain human tumours may contri- bute to cellular transformation by promoting genomic instability
- …