29 research outputs found

    The locomotory apparatus and paraxial swimming in fossil and living marine reptiles: comparing Nothosauroidea, Plesiosauria, and Chelonioidea

    No full text
    <jats:title>Abstract</jats:title><jats:p>The terrestrial origins of the diapsid Sauropterygia and Testudines are uncertain, with the latter being highly controversially discussed to this day. For only 15 Ma, Nothosauroidea lived in shallow-marine seas of the Triassic. Contrastingly, the pelagic Plesiosauria evolved in the Late Triassic, dispersed globally, and inhabited the oceans of the Jurassic and Cretaceous for approximately 135 Ma. Since the Cretaceous (~ 100 Ma), Chelonioidea, the modern sea turtles, have populated the oceans. All three groups evolved aquatic paraxial locomotion. Nothosaurs swam with their foreflippers, supported by the swimming tail. Plesiosaurs are the only tetrapods to have ever evolved four hydrofoil-like flippers. The plesiosaur flipper beat cycle has been debated for nearly two centuries. The different proposed locomotory styles (rowing, rowing-flight, underwater flight) are discussed in this review. A fourth gait that is employed by <jats:italic>Carettochelys insculpta</jats:italic>, which combines rowing and flying, is introduced. The osteology of the locomotory apparatus of nothosaurs and plesiosaurs is reviewed and compared to that of extant underwater-flying Chelonioidea. In conclusion, underwater flight remains the favoured locomotory style for plesiosaurs. Also, the review reveals that nothosaur locomotion has largely remained unstudied. Further, our understanding of joint morphologies and mobilities of the foreflipper in nothosaurs, plesiosaurs, and even recent sea turtles, and of the hindflipper in plesiosaurs, is very limited. It is crucial to the discussion of locomotion, to find out, if certain limb cycles were even possible, as evidence seems to point to the improbability of a rowing motion because of limited humerus and femur long axis rotation in plesiosaurs.</jats:p&gt

    New Insights into the Extent of the Late Palaeolithic Settlement on the Martinsberg in Andernach (Lkr. Mayen-Koblenz)

    No full text
    In 2006, the Generaldirektion Kulturelles Erbe Rheinland-Pfalz (GDKE) had to conduct an excavation in the Roonstrasse in Andernach, immediately beside the important Palaeolithic site of Andernach-Martinsberg. Due to construction work, the time for the excavation of the 120 m(2) area was very short and the sediment was divided into quarters of metre squares and packaged in bags. Later, employees of the GDKE and students of the Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU) conducted a wet-sieving of the sediments. In 2018, within the context of a bachelor thesis, the lithic artefacts found during wet-sieving were analyzed technologically and typologically as well as with regard to their spatial distribution. Typological elements, such as three short scrapers, indicate a Late Palaeolithic origin of the finds which is further corroborated by the lack of any characteristic Magdalenian tools. The technological analysis led to the result that a soft organic and a soft mineral hammer were both used for blank production. Comparing Andernach Roonstrasse with the Magdalenian concentrations I-IV and the Late Palaeolithic concentrations Andernach 2 and 3 showed several similarities with the latter two, but almost none with the Magdalenian assemblages. The spatial analysis of the finds distribution indicates that they represent a continuation of the already known Late Palaeolithic settlement of Andernach-Martinsberg

    Foreflipper and hindflipper muscle reconstructions of Cryptoclidus eurymerus in comparison to functional analogues: introduction of a myological mechanism for flipper twisting

    No full text
    Background Plesiosaurs, diapsid crown-group Sauropterygia, inhabited the oceans from the Late Triassic to the Late Cretaceous. Their most exceptional characteristic are four hydrofoil-like flippers. The question whether plesiosaurs employed their four flippers in underwater flight, rowing flight, or rowing has not been settled yet. Plesiosaur locomotory muscles have been reconstructed in the past, but neither the pelvic muscles nor the distal fore- and hindflipper musculature have been reconstructed entirely. Methods All plesiosaur locomotory muscles were reconstructed in order to find out whether it is possible to identify muscles that are necessary for underwater flight including those that enable flipper rotation and twisting. Flipper twisting has been proven by hydrodynamic studies to be necessary for efficient underwater flight. So, Cryptoclidus eurymerus fore- and hindflipper muscles and ligaments were reconstructed using the extant phylogenetic bracket (Testudines, Crocodylia, and Lepidosauria) and correlated with osteological features and checked for their functionality. Muscle functions were geometrically derived in relation to the glenoid and acetabulum position. Additionally, myology of functionally analogous Chelonioidea, Spheniscidae, Otariinae, and Cetacea is used to extract general myological adaptations of secondary aquatic tetrapods to inform the phylogenetically inferred muscle reconstructions. Results A total of 52 plesiosaur fore- and hindflipper muscles were reconstructed. Amongst these are flipper depressors, elevators, retractors, protractors, and rotators. These muscles enable a fore- and hindflipper downstroke and upstroke, the two sequences that represent an underwater flight flipper beat cycle. Additionally, other muscles were capable of twisting fore- and hindflippers along their length axis during down- and upstroke accordingly. A combination of these muscles that actively aid in flipper twisting and intermetacarpal/intermetatarsal and metacarpodigital/metatarsodigital ligament systems, that passively engage the successive digits, could have accomplished fore-and hindflipper length axis twisting in plesiosaurs that is essential for underwater flight. Furthermore, five muscles that could possibly actively adjust the flipper profiles for efficient underwater flight were found, too

    Diverse aquatic adaptations in nothosaurus spp. (sauropterygia)—inferences from humeral histology and microanatomy

    Get PDF
    Mid-diaphyseal cortical bone tissue in humeri of Nothosaurus spp. consists of coarse parallel-fibered bone, finer and higher organized parallel-fibered bone, and lamellar bone. Vascular canals are mainly arranged longitudinally and radially in a dominantly radial system. Blood vessels are represented by simple vascular canals, incompletely lined primary osteons, and fully developed primary osteons. Nothosaurus spp. shows a variety of diaphyseal microanatomical patterns, ranging from thick to very thin-walled cortices. In the early Anisian (Lower Muschelkalk), small- and large-bodied Nothosaurus spp. generally exhibit bone mass increase (BMI). In the middle to late Anisian (Middle Muschelkalk) small-bodied nothosaurs retain BMI whereas larger-bodied forms tend to show a decrease in bone mass (BMD). During the latest Anisian to early Ladinian (Upper Muschelkalk), small- and few large-bodied nothosaurs retain BMI, whereas the majority of large-bodied forms exhibit BMD. The stratigraphically youngest nothosaurs document five microanatomical categories, two of which are unique among marine amniotes: One consists of a very heterogeneously distributed spongy periosteal organization, the other of very thin-walled cortices. The functional significance of the two unique microanatomical specializations seen in large-bodied nothosaurs is the reduction of bone mass, which minimizes inertia of the limbs, and thus saves energy during locomotion. Transitions between the various microanatomical categories are rather gradual. Our results suggest that small-bodied Nothosaurus marchicus and other, not further assignable small-bodied nothosaurs seem to have been bound to near-shore, shallow marine environments throughout their evolution. Some large-bodied Nothosaurus spp. followed the same trend but others became more active swimmers and possibly inhabited open marine environments. The variety of microanatomical patterns may be related to taxonomic differences, developmental plasticity, and possibly sexual dimorphism. Humeral microanatomy documents the diversification of nothosaur species into different environments to avoid intraclade competition as well as competition with other marine reptiles. Nothosaur microanatomy indicates that knowledge of processes involved in secondary aquatic adaptation and their interaction are more complex than previously believed
    corecore