26 research outputs found

    Impact of in vitro digestion on gastrointestinal fate and uptake of silver nanoparticles with different surface modifications

    Get PDF
    Nanomaterials, especially silver nanoparticles (AgNPs), are used in a broad range of products owing to their antimicrobial potential. Oral ingestion is considered as a main exposure route to AgNPs. This study aimed to investigate the impact of the biochemical conditions within the human digestive tract on the intestinal fate of AgNPs across an intestinal in vitro model of differentiated Caco-2/HT29-MTX cells. The co-culture model was exposed to different concentrations (250–2500 µg/L) of pristine and in vitro digested (IVD) AgNPs and silver nitrate for 24 h. ICP-MS and spICP-MS measurements were performed for quantification of total Ag and AgNPs. The AgNPs size distribution, dissolution, and particle concentration (mass- and number-based) were characterized in the cell fraction and in the apical and basolateral compartments of the monolayer cultures. A significant fraction of the AgNPs dissolved (86–92% and 48–70%) during the digestion. Cellular exposure to increasing concentrations of pristine or IVD AgNPs resulted in a concentration dependent increase of total Ag and AgNPs content in the cellular fractions. The cellular concentrations were significantly lower following exposure to IVD AgNPs compared to the pristine AgNPs. Transport of silver as either total Ag or AgNPs was limited (<0.1%) following exposure to pristine and IVD AgNPs. We conclude that the surface chemistry of AgNPs and their digestion influence their dissolution properties, uptake/association with the Caco-2/HT29-MTX monolayer. This highlights the need to take in vitro digestion into account when studying nanoparticle toxicokinetics and toxicodynamics in cellular in vitro model systems.</p

    Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats

    Get PDF
    The likelihood of oral exposure to nanoparticles (NPs) is increasing, and it is necessary to evaluate the oral bioavailability of NPs. In vitro approaches could help reducing animal studies, but validation against in vivo studies is essential. Previously, we assessed the translocation of 50 nm polystyrene NPs of different charges (neutral, positive and negative) using a Caco-2/HT29-MTX in vitro intestinal translocation model. The NPs translocated in a surface charge-dependent manner. The present study aimed to validate this in vitro intestinal model by an in vivo study. For this, rats were orally exposed to a single dose of these polystyrene NPs and the uptake in organs was determined. A negatively charged NP was taken up more than other NPs, with the highest amounts in kidney (37.4 µg/g tissue), heart (52.8 µg/g tissue), stomach wall (98.3 µg/g tissue) and small intestinal wall (94.4 µg/g tissue). This partly confirms our in vitro findings, where the same NPs translocated to the highest extent. The estimated bioavailability of different types of NPs ranged from 0.2 to 1.7 % in vivo, which was much lower than in vitro (1.6–12.3 %). Therefore, the integrated in vitro model cannot be used for a direct prediction of the bioavailability of orally administered NPs. However, the model can be used for prioritizing NPs before further in vivo testing for risk assessment. © 2015, The Author(s)

    Does abscisic acid affect strigolactone biosynthesis?

    Get PDF
    Strigolactones are considered a novel class of plant hormones that, in addition to their endogenous signalling function, are exuded into the rhizosphere acting as a signal to stimulate hyphal branching of arbuscular mycorrhizal (AM) fungi and germination of root parasitic plant seeds. Considering the importance of the strigolactones and their biosynthetic origin (from carotenoids), we investigated the relationship with the plant hormone abscisic acid (ABA). Strigolactone production and ABA content in the presence of specific inhibitors of oxidative carotenoid cleavage enzymes and in several tomato ABA-deficient mutants were analysed by LC-MS/MS. In addition, the expression of two genes involved in strigolactone biosynthesis was studied. * • The carotenoid cleavage dioxygenase (CCD) inhibitor D2 reduced strigolactone but not ABA content of roots. However, in abamineSG-treated plants, an inhibitor of 9-cis-epoxycarotenoid dioxygenase (NCED), and the ABA mutants notabilis, sitiens and flacca, ABA and strigolactones were greatly reduced. The reduction in strigolactone production correlated with the downregulation of LeCCD7 and LeCCD8 genes in all three mutants. * • The results show a correlation between ABA levels and strigolactone production, and suggest a role for ABA in the regulation of strigolactone biosynthesis

    Floral volatiles in parasitic plants of the orobanchaceae. Ecological and taxonomic implications

    Get PDF
    The holoparasitic broomrapes, Orobanche spp. and Phelipanche spp. (Orobanchaceae), are root parasites that completely depend on a host plant for survival and reproduction. There is considerable controversy on the taxonomy of this biologically and agronomically important family. Flowers of over 25 parasitic Orobanchaceae and a number of close, parasitic and non-parasitic, relatives emitted a complex blend of volatile organic compounds (VOCs), consisting of over 130 VOCs per species. Floral VOC blend-based phylogeny supported the known taxonomy in internal taxonomic grouping of genus and eliminated the uncertainty in some taxonomical groups. Moreover, phylogenetic analysis suggested separation of the broomrapes into two main groups parasitizing annual and perennial hosts, and for the annual hosts, into weedy and non-weedy broomrapes. We conclude that floral VOCs are a significant tool in species identification and possibly even in defining new species and can help to improve controversial taxonomy in the Orobanchaceae.</p

    Safety of recycled plastics and textiles : Review on the detection, identification and safety assessment of contaminants

    No full text
    In 2019, 368 mln tonnes of plastics were produced worldwide. Likewise, the textiles and apparel industry, with an annual revenue of 1.3 trillion USD in 2016, is one of the largest fast-growing industries. Sustainable use of resources forces the development of new plastic and textile recycling methods and implementation of the circular economy (reduce, reuse and recycle) concept. However, circular use of plastics and textiles could lead to the accumulation of a variety of contaminants in the recycled product. This paper first reviewed the origin and nature of potential hazards that arise from recycling processes of plastics and textiles. Next, we reviewed current analytical methods and safety assessment frameworks that could be adapted to detect and identify these contaminants. Various contaminants can end up in recycled plastic. Phthalates are formed during waste collection while flame retardants and heavy metals are introduced during the recycling process. Contaminants linked to textile recycling include; detergents, resistant coatings, flame retardants, plastics coatings, antibacterial and anti-mould agents, pesticides, dyes, volatile organic compounds and nanomaterials. However, information is limited and further research is required. Various techniques are available that have detected various compounds, However, standards have to be developed in order to identify these compounds. Furthermore, the techniques mentioned in this review cover a wide range of organic chemicals, but studies covering potential inorganic contamination in recycled materials are still missing. Finally, approaches like TTC and CoMSAS for risk assessment should be used for recycled plastic and textile materials

    The use of Metabolomics to Elucidate Resistance Markers Against Damson-Hop Aphid

    Get PDF
    Phorodon humuli (Damson-hop aphid) is one of the major pests of hops in the northern hemisphere. It causes significant yield losses and reduces hop quality and economic value. Damson-hop aphid is currently controlled with insecticides, but the number of approved pesticides is steadily decreasing. In addition, the use of insecticides almost inevitably results in the development of resistant aphid genotypes. An integrated approach to pest management in hop cultivation is therefore badly needed in order to break this cycle and to prevent the selection of strains resistant to the few remaining registered insecticides. The backbone of such an integrated strategy is the breeding of hop cultivars that are resistant to Damson-hop aphid. However, up to date mechanisms of hops resistance towards Damson-hop aphids have not yet been unraveled. In the experiments presented here, we used metabolite profiling followed by multivariate analysis and show that metabolites responsible for hop aroma and flavor (sesquiterpenes) in the cones can also be found in the leaves, long before the hop cones develop, and may play a role in resistance against aphids. In addition, aphid feeding induced a change in the metabolome of all hop genotypes particularly an increase in a number of oxidized compounds, which suggests this may be part of a resistance mechanism.</p

    Quantitative image analysis of microplastics in bottled water using Artificial Intelligence

    No full text
    The ubiquitous occurrence of microplastics (MPs) in the environment and the use of plastics in packaging materials result in the presence of MPs in the food chain and the exposure of consumers. Yet, no fully validated analytical method is available for microplastic (MP) quantification, thereby preventing the reliable estimation of the level of exposure and, ultimately, the assessment of the food safety risks associated with MP contamination. In this study, a novel approach is presented that exploits interactive artificial intelligence tools to enable the automation of MP analysis. An integrated method for the analysis of MPs in bottled water based on Nile Red staining and fluorescent microscopy was developed and validated, featuring a partial interrogation of the filter and a fully automated image processing workflow based on a Random Forest classifier, thereby boosting the analysis speed. The image analysis provided particle count, size and size distribution of the MPs. From these data, a rough estimation of the mass of the individual MPs, and consequently of the MP mass concentration in the sample, could be obtained as well. Critical materials, method performance characteristics, and final applicability were studied in detail. The method showed to be highly sensitive in sizing MPs down to 10 µm, with a particle count limit of detection and quantification of 28 and 85 items/500 mL, respectively. Linearity of mass concentration determined between 10 ppb and 1.5 ppm showed a regression coefficient of (R2) of 0.99. Method precision was demonstrated by repeatability of 9 - 16% RSD (n = 7) and within-laboratory reproducibility of 15 - 27 % RSD (n = 21). Accuracy based on recovery was 92 ± 15 % and 98 ± 23 % at a level of 0.1 and 1.0 ppm, respectively. The quantitative performance characteristics thus obtained complied with regulatory requirements. Finally, the method was successfully applied to the analysis of twenty commercial samples of bottled water, with and without gas and flavor additives, yielding results ranging from values below the limit of detection to 7237 (95% CI [6456, 8088]) items/500 mL

    Multi-element analysis of single nanoparticles by ICP-MS using quadrupole and time-of-flight technologies

    No full text
    Determining composition, shape, and size of nanoparticles dispersed in a complex matrix is necessary in the assessment of toxicity, for regulatory actions, and environmental monitoring. Many types of nanoparticles that are currently used in consumer products contain more than one metal which are often not uniformly distributed (e.g., core-shell nanoparticles). This compositional and structural complexity makes their characterization difficult. In this study, we investigate the capability of single particle inductively coupled plasma mass spectrometry (spICP-MS) using time-of-flight (TOF) and quadrupole (Q) mass analyzers to determine the composition, size distribution, and concentration of a series of nanoparticles that are used in a variety of industrial applications: BiVO4, (Bi0.5Na0.5)TiO3 and steel (which contains Fe, Cr, Ni, Mo) nanoparticles. In addition, we tested both types of mass analyzers with Au-core/Ag-shell nanoparticles, which are well-characterized and have already been used for assessment of multi-element capabilities of spICP-MS. The results confirm that both types of mass analyzers produce accurate estimations of the size of Au-core/Ag-shell particles. For other multi-element nanoparticles, spICP-MS provided the size of aggregates and/or agglomerates in the prepared suspensions. In general, particle size detection limits (dLOD) of spICP-TOFMS instruments with values of 29 nm for Ti, 14 nm for Mo, and 7 nm for Au, are smaller than those obtained for the quadrupole instruments. This study finds that only spICP-TOFMS can accurately assess the elemental composition of nano-steel particles. By contrast, spICP-QMS is limited to the detection of 2 elements in an individual particle and the elemental composition of nano-steel particles is less accurate. In general, spICP-TOFMS was able to quantify multiple elements with high precision and that currently makes it the first choice for multi-element detection of unknown nanoparticles
    corecore