10 research outputs found

    Raman response of quantum critical ferroelectric pb-doped srtio3

    Get PDF
    A quantum paraelectric SrTiO3 is a material situated in close proximity to a quantum critical point (QCP) of ferroelectric transition in which the critical temperature to the ferroelectric state is suppressed down to 0 K. However, the understanding of the behavior of the phase transition in the vicinity of this point remains challenging. Using the concentration x of Pb in solid solution Sr1−x Pbx TiO3 (PSTx) as a tuning parameter and applying the combination of Raman and dielectric spectroscopy methods, we approach the QCP in PSTx and study the interplay of classical and quantum phenomena in the region of criticality. We obtain the critical temperature of PSTx and the evolution of the temperature-dependent dynamical properties of the system as a function of x to reveal the mechanism of the transition. We show that the ferroelectric transition occurs gradually through the emergence of the polar nanoregions inside the non-polar tetragonal phase with their further expansion on cooling. We also study the ferroelastic cubic-to-tetragonal structural transition, occurring at higher temperatures, and show that its properties are almost concentration-independent and not affected by the quantum criticality.Fil: Linnik, Ekaterina D.. Southern Federal University; RusiaFil: Mikheykin, Alexey S.. Southern Federal University; RusiaFil: Rubi, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; ArgentinaFil: Shirokov, Vladimir B.. No especifíca;Fil: Mezzane, Daoud. No especifíca;Fil: Kondovych, Svitlana V.. No especifíca;Fil: Lukyanchuk, Igor A.. No especifíca;Fil: Razumnaya, Anna G.. Southern Federal University; Rusi

    Electrocaloric effect and high energy storage efficiency in lead-free Ba0.95_{0.95}Ca0.05_{0.05}Ti0.89_{0.89}Sn0.11_{0.11}O3_3 ceramic elaborated by sol-gel method

    Full text link
    Structural, dielectric, ferroelectric, energy storage properties, and electrocaloric effect were studied in lead-free ceramic Ba0.95_{0.95}Ca0.05_{0.05}Ti0.89_{0.89}Sn0.11_{0.11}O3_3 (BCTSn) elaborated by sol-gel method. Phase purity structure was confirmed from X-ray data using Rietveld refinement analysis which revealed the coexistence of tetragonal (P4mm) and orthorhombic (Amm2) symmetries at room temperature. Phase transitions were detected by dielectric and differential scanning calorimetry results. Energy storage properties were determined from P-E hysteresis, and the electrocaloric properties were calculated indirectly via the Maxwell approach. The large value of electrocaloric temperature change of Δ\DeltaT=0.807 K obtained at a relatively small field of 30 kV cm1^{-1} and high energy storage efficiency can make BCTSn ceramic a promising candidate for environmentally friendly refrigeration and energy storage applications

    Phase Diagram of a Strained Ferroelectric Nanowire

    Get PDF
    Ferroelectric materials manifest unique dielectric, ferroelastic, and piezoelectric properties. A targeted design of ferroelectrics at the nanoscale is not only of fundamental appeal but holds the highest potential for applications. Compared to two-dimensional nanostructures such as thin films and superlattices, one-dimensional ferroelectric nanowires are investigated to a much lesser extent. Here, we reveal a variety of the topological polarization states, particularly the vortex and helical chiral phases, in loaded ferroelectric nanowires, which enable us to complete the strain–temperature phase diagram of the one-dimensional ferroelectrics. These phases are of prime importance for optoelectronics and quantum communication technologie

    Temperature Dependence of Dielectric Properties of Ferroelectric Heterostructures with Domain-Provided Negative Capacitance

    No full text
    It is well known that the ferroelectric layers in dielectric/ferroelectric/dielectric heterostructures harbor polarization domains resulting in the negative capacitance crucial for manufacturing energy-efficient field-effect transistors. However, the temperature behavior of the characteristic dielectric properties, and, hence, the corresponding behavior of the negative capacitance, are still poorly understood, restraining the technological progress thereof. Here we investigate the temperature-dependent properties of domain structures in the SrTiO3/PbTiO3/SrTiO3 heterostructures and demonstrate that the temperature–thickness phase diagram of the system includes the ferroelectric and paraelectric regions, which exhibit different responses to the applied electric field. Using phase-field modeling and analytical calculations we find the temperature dependence of the dielectric constant of ferroelectric layers and identify the regions of the phase diagram wherein the system demonstrates negative capacitance. We further discuss the optimal routes for implementing negative capacitance in energy-efficient ferroelectric field-effect transistors

    Enhancement of dielectric properties of lead-free BCZT ferroelectric ceramics by grain size engineering

    No full text
    Lead-free Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCZT) ceramics had attracted much attention for the fabrication of microelectronic devices by virtue of their excellent dielectric, ferroelectric and piezoelectric properties. To understand the effects of both mean grain size and grain size distribution on the dielectric properties of lead-free Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCZT) ferroelectric relaxors, an original method was proposed. It is based on the surfactant-assisted solvothermal processing coupled with low-temperature conventional sintering at 1250 °C. In this way, three highly dense BCZT with different mean grain size and dissimilar grain size distribution were designed. A significant increase of dielectric properties was obtained by a control of grain size and densification process. The dielectric constants measured were ranged from 5370 to 9646 and the dielectric loss was enhanced by 70%. Surprisingly, it was evidenced that there is unequivocal link between mean grain size with dielectric properties. Indeed, it was found that the presence of high density of refined grains leads to an improvement of dielectric properties due to an enhancement of densification. This work may provide a new strategy to design ferroelectric materials with enhanced properties

    Electrocaloric effect and high energy storage efficiency in lead-free Ba0.95Ca0.05Ti0.89Sn0.11O3 ceramic elaborated by sol-gel method

    No full text
    International audienceStructural, dielectric, ferroelectric, energy storage properties, and electrocaloric effect were studied in lead-free ceramic Ba0.95Ca0.05Ti0.89Sn0.11O3 (BCTSn) elaborated by the sol-gel method. Phase purity structure was confirmed from X-ray data using the Rietveld refinement analysis which revealed the coexistence of tetragonal (P4mm) and orthorhombic (Amm2) symmetries at room temperature. Phase transitions were detected by dielectric and differential scanning calorimetry measurements. The energy storage properties were determined from P-E hysteresis, and the electrocaloric properties were calculated indirectly via the Maxwell approach. The large value of electrocaloric temperature change of Delta T = 0.807 K obtained at a relatively small electric field of 30 kV cm(-1), and the high energy storage efficiency can make BCTSn ceramic a promising candidate for environmentally friendly refrigeration and energy storage applications

    Phase Diagram of a Strained Ferroelectric Nanowire

    No full text
    Ferroelectric materials manifest unique dielectric, ferroelastic, and piezoelectric properties. A targeted design of ferroelectrics at the nanoscale is not only of fundamental appeal but holds the highest potential for applications. Compared to two-dimensional nanostructures such as thin films and superlattices, one-dimensional ferroelectric nanowires are investigated to a much lesser extent. Here, we reveal a variety of the topological polarization states, particularly the vortex and helical chiral phases, in loaded ferroelectric nanowires, which enable us to complete the strain–temperature phase diagram of the one-dimensional ferroelectrics. These phases are of prime importance for optoelectronics and quantum communication technologies

    Lattice anharmonicity and polar soft mode in ferrimagnetic M-type hexaferrite BaFe

    No full text
    The polar phonon modes in BaFe12O19 single crystal are studied in the temperature range from 6 to 300 K by polarized infrared spectroscopy. The phonon spectrum of the crystal is strongly anharmonic and unstable with respect to long-wavelength fluctuations of the dielectric permittivity along the hexagonal axis. Our results suggests that in BaFe12O19 hexaferrite symmetry lowering to the polar phase with the space group P63mc can be expected
    corecore