194 research outputs found

    Trafficking of endoplasmic reticulum-retained recombinant proteins is unpredictable in Arabidopsis thaliana

    Get PDF
    A wide variety of recombinant proteins has been produced in the dicot model plant, Arabidopsis thaliana. Many of these proteins are targeted for secretion by means of an N-terminal endoplasmic reticulum (ER) signal peptide. In addition, they can also be designed for ER retention by adding a C-terminal H/KDEL-tag. Despite extensive knowledge of the protein trafficking pathways, the final protein destination, especially of such H/KDEL-tagged recombinant proteins, is unpredictable. In this respect, glycoproteins are ideal study objects. Microscopy experiments reveal their deposition pattern and characterization of their N-glycans aids in elucidating the trafficking. Here, we combine microscopy and N-glycosylation data generated in Arabidopsis leaves and seeds, and highlight the lack of a decent understanding of heterologous protein trafficking

    Transformation strategies for stable expression of complex hetero-multimeric proteins like secretory immunoglobulin A in plants

    Get PDF
    Plant expression systems have proven to be exceptional in producing high-value complex polymeric proteins such as secretory IgAs (SIgAs). However, polymeric protein production requires the expression of multiple genes, which can be transformed as single or multiple T-DNA units to generate stable transgenic plant lines. Here, we evaluated four strategies to stably transform multiple genes and to obtain high expression of all components. Using the in-seed expression of a simplified secretory IgA (sSIgA) as a reference molecule, we conclude that it is better to spread the genes over two T-DNAs than to contain them in a single T-DNA, because of the presence of homologous recombination events and gene silencing. If time matters, these T-DNAs can be cotransformed to obtain transgenic plants in one transformation step. However, more transformants with high production levels of the polymeric protein can be obtained either by sequential transformation or by in-parallel transformation followed by crossing of transformants independently selected for excellent expression of the genes in each T-DNA

    Seed-produced anti-globulin VHH-Fc antibodies retrieve globulin precursors in the insoluble fraction and modulate the Arabidopsis thaliana seed subcellular morphology

    Get PDF
    Key message Nanobody-heavy chain (VHH-Fc) antibody formats have the potential to immunomodulate even highly accumulating proteins and provide a valuable tool to experimentally modulate the subcellular distribution of seed storage proteins. Recombinant antibodies often obtain high accumulation levels in plants, and thus, besides being the actual end-product, antibodies targeting endogenous host proteins can be used to interfere with the localization and functioning of their corresponding antigens. Here, we compared the effect of a seed-expressed nanobody-heavy chain (VHH-Fc) antibody against the highly abundant Arabidopsis thaliana globulin seed storage protein cruciferin with that of a VHH-Fc antibody without endogenous target. Both antibodies reached high accumulation levels of around 10% of total soluble protein, but strikingly, another significant part was present in the insoluble protein fraction and was recovered only after extraction under denaturing conditions. In seeds containing the anti-cruciferin antibodies but not the antibody without endogenous target, the amount of soluble, processed globulin subunits was severely reduced and a major part of the cruciferin molecules was found as precursor in the insoluble fraction. Moreover, in these seeds, aberrant vacuolar phenotypes were observed that were different from the effects caused by the depletion of globulins in knock-out seeds. Remarkably, the seeds with strongly reduced globulin amounts are fully viable and germinate with frequencies similar to wild type, illustrating how flexible seeds can retrieve amino acids from the stored proteins to start germination

    Simplified monomeric VHH-Fc antibodies provide new opportunities for passive immunization

    Get PDF
    Simplified monomeric monoclonal antibodies consisting of a single-domain VHH, derived from camelid heavy-chain only antibodies, fused with the Fc domain of either IgG (VHH-IgG) or IgA (VHH-IgA) antibodies, are promising therapeutic proteins. These simplified single-gene encoded antibodies are much easier to manufacture and can be produced in plants and in yeast for bulk applications. These merits enable novel passive immunization applications, such as in-feed oral delivery of VHH-IgAs, which have successfully provided protection against a gastrointestinal infection in the piglet model

    Boosting in planta production of antigens derived from the porcine reproductive and respiratory syndrome virus (PRRSV) and subsequent evaluation of their immunogenicity

    Get PDF
    Porcine reproductive and respiratory syndrome (PRRS) is a disease of swine, caused by an arterivirus, the PRRS virus (PRRSV). This virus infects pigs worldwide and causes huge economic losses. Due to genetic drift, current vaccines are losing their power. Adaptable vaccines could provide a solution to this problem. This study aims at producing in planta a set of antigens derived from the PRRSV glycoproteins (GPs) to be included in a subunit vaccine. We selected the GP3, GP4 and GP5 and optimized these for production in an Arabidopsis seed platform by removing transmembrane domains (Tm) and/or adding stabilizing protein domains, such as the green fluorescent protein (GFP) and immunoglobulin (IgG) 'Fragment crystallizable' (Fc) chains. Accumulation of the GPs with and without Tm was low, reaching no more than 0.10% of total soluble protein (TSP) in homozygous seed. However, addition of stabilizing domains boosted accumulation up to a maximum of 2.74% of TSP when GFP was used, and albeit less effectively, also the Fc chains of the porcine IgG3 and murine IgG2a increased antigen accumulation, to 0.96% and 1.81% of TSP respectively, while the murine IgG3 Fc chain did not. Antigens with Tm were less susceptible to these manipulations to increase yield. All antigens were produced in the endoplasmic reticulum and accordingly, they carried high-mannose N-glycans. The immunogenicity of several of those antigens was assessed and we show that vaccination with purified antigens did elicit the production of antibodies with virus neutralizing activity in mice but not in pigs

    Tumor induction by Agrobacterium tumefaciens: analysis of the boundaries of T-DNA

    Get PDF
    Molecular cloning has been used to isolate the ends of that portion of the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens which has been designated T-DNA and which has been transferred to the genome of tobacco crown gall tumor cells. Analysis of the DNA sequences of the plant border clones compared with the corresponding sequences of the Ti plasmid suggests that the mechanism of transferred DNA integration and subsequent stabilization is precise at the right border and imprecise on the left. The T-DNAjunction occurs within a variation of a single base pair (bp) on the right but varies over at least 70 bp on the left. In addition, there are several sequences which are repeated near the ends of the T-DNA region in theTi plasmid. Seemingly, there is no specificity with regard to the site of integration in the plant genome

    The trans-silencing capacity of invertedly repeated transgenes depends on their epigenetic state in tobacco

    Get PDF
    We studied the in trans-silencing capacities of a transgene locus that carried the neomycin phosphotransferase II reporter gene linked to the 35S promoter in an inverted repeat (IR). This transgene locus was originally posttranscriptionally silenced but switched to a transcriptionally silenced epiallele after in vitro tissue culture. Here, we show that both epialleles were strongly methylated in the coding region and IR center. However, by genomic sequencing, we found that the 1.0 kb region around the transcription start site was heavily methylated in symmetrical and non-symmetrical contexts in transcriptionally but not in posttranscriptionally silenced epilallele. Also, the posttranscriptionally silenced epiallele could trans-silence and trans-methylate homologous transgene loci irrespective of their genomic organization. We demonstrate that this in trans-silencing was accompanied by the production of small RNA molecules. On the other hand, the transcriptionally silenced variant could neither trans-silence nor trans-methylate homologous sequences, even after being in the same genetic background for generations and meiotic cycles. Interestingly, 5-aza-2-deoxy-cytidine-induced hypomethylation could partially restore signaling from the transcriptionally silenced epiallele. These results are consistent with the hypothesis that non-transcribed highly methylated IRs are poor silencers of homologous loci at non-allelic positions even across two generations and that transcription of the inverted sequences is essential for their trans-silencing potential

    RNA Target Sequences Promote Spreading of RNA Silencing

    Full text link
    • …
    corecore