138 research outputs found

    Insulin-like growth factor-1 in CNS and cerebrovascular aging

    Get PDF
    Insulin-like growth factor-1 (IGF-1) is an important anabolic hormone that decreases with age. In the past two decades, extensive research has determined that the reduction in IGF-1 is an important component of the age-related decline in cognitive function in multiple species including humans. Deficiency in circulating IGF-1 results in impairment in processing speed and deficiencies in both spatial and working memory. Replacement of IGF-1 or factors that increase IGF-1 to old animals and humans reverses many of these cognitive deficits. Despite the overwhelming evidence for IGF-1 as an important neurotrophic agent, the specific mechanisms through which IGF-1 acts have remained elusive. Recent evidence indicates that IGF-1 is both produced by and has important actions on the cerebrovasculature as well as neurons and glia. Nevertheless, the specific regulation and actions of brain- and vascular-derived IGF-1 is poorly understood. The diverse effects of IGF-1 discovered thus far reveal a complex endocrine and paracrine system essential for integrating many of the functions necessary for brain health. Identification of the mechanisms of IGF-1 actions will undoubtedly provide critical insight into regulation of brain function in general and the causes of cognitive decline with age

    What Is New for an Old Molecule? Systematic Review and Recommendations on the Use of Resveratrol

    Get PDF
    BACKGROUND: Resveratrol is a natural compound suggested to have beneficial health effects. However, people are consuming resveratrol for this reason without having the adequate scientific evidence for its effects in humans. Therefore, scientific valid recommendations concerning the human intake of resveratrol based on available published scientific data are necessary. Such recommendations were formulated after the Resveratrol 2010 conference, held in September 2010 in HelsingĂžr, Denmark. METHODOLOGY: Literature search in databases as PUBMED and ISI Web of Science in combination with manual search was used to answer the following five questions: (1)Can resveratrol be recommended in the prevention or treatment of human diseases?; (2)Are there observed side effects caused by the intake of resveratrol in humans?; (3)What is the relevant dose of resveratrol?; (4)What valid data are available regarding an effect in various species of experimental animals?; (5)Which relevant (overall) mechanisms of action of resveratrol have been documented? CONCLUSIONS/SIGNIFICANCE: The overall conclusion is that the published evidence is not sufficiently strong to justify a recommendation for the administration of resveratrol to humans, beyond the dose which can be obtained from dietary sources. On the other hand, animal data are promising in prevention of various cancer types, coronary heart diseases and diabetes which strongly indicate the need for human clinical trials. Finally, we suggest directions for future research in resveratrol regarding its mechanism of action and its safety and toxicology in human subjects

    Influence of diabetes on ambulation and inflammation in men and women with symptomatic peripheral artery disease

    Get PDF
    AbstractObjectiveTo determine whether diabetes and sex were factors associated with ambulatory function, endothelial cell inflammation, oxidative stress, and apoptosis, and with circulating biomarkers of inflammation and antioxidant capacity in patients with peripheral artery disease (PAD) and claudication.Materials/MethodsAmbulatory function of 180 symptomatic men and women with PAD was assessed during a graded maximal treadmill test, 6-minute walk test, and 4-meter walk test. Patients were further characterized on endothelial effects of circulating factors present in the sera using a cell culture-based bioassay on primary human arterial endothelial cells, and on circulating inflammatory and vascular biomarkers.ResultsMen and women with diabetes had greater prevalence (p = 0.007 and p = 0.015, respectively) of coronary artery disease (CAD) than patients without diabetes. To assure that this difference did not influence planned comparisons, the data set was stratified on CAD. Diabetic men with CAD had a lower peak walking time (PWT) during the treadmill test and a slower 4-meter gait speed compared to non-diabetic men with CAD (p < 0.05). Diabetic women with CAD had a lower PWT compared to their non-diabetic counterparts (p < 0.01). Additionally, diabetic men with CAD had higher pigment epithelium-derived factor (p < 0.05) than their non-diabetic counterparts, and diabetic women with CAD had higher leptin (p < 0.01) and interleukin-8 levels (p < 0.05).ConclusionsIn patients with PAD, diabetic men and women with CAD had more severe claudication than their non-diabetic counterparts, as measured by shorter PWT, and the men had further ambulatory impairment manifested by slower 4-meter gait speed. Furthermore, the diabetic patients with CAD had elevations in interleukin-8, leptin, and PEDF

    Resveratrol Supplementation Confers Neuroprotection in Cortical Brain Tissue of Nonhuman Primates Fed a High-Fat/Sucrose Diet

    Get PDF
    Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-ÎșB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress

    Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice

    Get PDF
    Adjustment of cerebral blood flow (CBF) to neuronal activity via neurovascular coupling (NVC) has an essential role in maintenance of healthy cognitive function. In aging increased oxidative stress and cerebromicrovascular endothelial dysfunction impair NVC, contributing to cognitive decline. There is increasing evidence showing that a decrease in NAD+ availability with age plays a critical role in a range of age-related cellular impairments but its role in impaired NVC responses remains unexplored. The present study was designed to test the hypothesis that restoring NAD+ concentration may exert beneficial effects on NVC responses in aging. To test this hypothesis 24-month-old C57BL/6 mice were treated with nicotinamide mononucleotide (NMN), a key NAD+ intermediate, for 2 weeks. NVC was assessed by measuring CBF responses (laser Doppler flowmetry) evoked by contralateral whisker stimulation. We found that NVC responses were significantly impaired in aged mice. NMN supplementation rescued NVC responses by increasing endothelial NO-mediated vasodilation, which was associated with significantly improved spatial working memory and gait coordination. These findings are paralleled by the sirtuin-dependent protective effects of NMN on mitochondrial production of reactive oxygen species and mitochondrial bioenergetics in cultured cerebromicrovascular endothelial cells derived from aged animals. Thus, a decrease in NAD+ availability contributes to age-related cerebromicrovascular dysfunction, exacerbating cognitive decline. The cerebromicrovascular protective effects of NMN highlight the preventive and therapeutic potential of NAD+ intermediates as effective interventions in patients at risk for vascular cognitive impairment (VCI)

    Obesity-induced cognitive impairment in older adults: a microvascular perspective

    Get PDF
    Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed

    Expanding the horizon of research into the pathogenesis of the white matter diseases: Proceedings of the 2021 Annual Workshop of the Albert Research Institute for White Matter and Cognition

    Get PDF
    White matter pathologies are critically involved in the etiology of vascular cognitive impairment–dementia (VCID), Alzheimer’s disease (AD), and Alzheimer’s disease and related diseases (ADRD), and therefore need to be considered a treatable target (Roseborough A, Hachinski V, Whitehead S. White matter degeneration - a treatable target? Roseborough et al. JAMA Neurol [Internet]. 2020 Apr 27;77(7):793–4, [1]. To help address this often-missed area of research, several workshops have been sponsored by the Leo and Anne Albert Charitable Trust since 2015, resulting in the incorporation of “The Albert Research Institute for White Matter and Cognition” in 2020. The first annual “Institute” meeting was held virtually on March 3–4, 2021. The Institute provides a forum and workspace for communication and support of the advancement of white matter science and research to better understand the evolution and prevention of dementia. It serves as a platform for young investigator development, to introduce new data and debate biology mechanisms and new ideas, and to encourage and support new research collaborations and directions to clarify how white matter changes, with other genetic and health risk factors, contribute to cognitive impairment. Similar to previous Albert Trust–sponsored workshops (Barone et al. in J Transl Med 14:1–14, [2]; Sorond et al. in GeroScience 42:81–96, [3]), established expert investigators were identified and invited to present. Opportunities to attend and present were also extended by invitation to talented research fellows and younger scientists. Also, updates on institute-funded research collaborations were provided and discussed. The summary that follows is a synopsis of topics and discussion covered in the workshop

    Role of NAD(P)H Oxidase in Superoxide Generation and Endothelial Dysfunction in Goto-Kakizaki (GK) Rats as a Model of Nonobese NIDDM

    Get PDF
    Background: Cardiovascular disease is the leading cause of mortality in diabetics, and it has a complex etiology that operates on several levels. Endothelial dysfunction and increased generation of reactive oxygen species are believed to be an underlying cause of vascular dysfunction and coronary artery disease in diabetes. This impairment is likely the result of decreased bioavailability of nitric oxide (NO) within the vasculature. However, it is unclear whether hyperglycemia per se stimulates NADPH oxidase-derived superoxide generation in vascular tissue. Methods and Results: This study focused on whether NADPH oxidase-derived superoxide is elevated in vasculature tissue evoking endothelial/smooth muscle dysfunction in the hyperglycemic (16964 mg%) Goto-Kakizaki (GK) rat. By dihydroethidine fluorescence staining, we determined that aorta superoxide levels were significantly elevated in 9 month-old GK compared with age matched Wistar (GK; 19566%, Wistar; 10063.5%). Consistent with these findings, 10 26 mol/L acetylcholine-induced relaxation of the carotid artery was significantly reduced in GK rats compared with age matched Wistar (GK; 4167%, Wistar; 10065%) and measurements in the aorta showed a similar trend (p =.08). In contrast, relaxation to the NO donor SNAP was unaltered in GK compared to Wistar. Endothelial dysfunction was reversed by lowering of superoxide with apocynin, a specific Nox inhibitor. Conclusions: The major findings from this study are that chronic hyperglycemia induces significant vascular dysfunction i

    New species longevity record for the northern quahog (=hard clam), Mercenaria mercenaria

    Get PDF
    Author Posting. © National Shellfisheries Association, 2011. This article is posted here by permission of National Shellfisheries Association for personal use, not for redistribution. The definitive version was published in Journal of Shellfish Research 30 (2011): 35-38, doi:10.2983/035.030.0106.Twenty-two large shells (>90 mm shell height) from a sample of live collected hard shell clams, Mercenaria mercenaria, from Buzzards Bay, Woods Hole, Cape Cod, MA, were subjected to sclerochronological analysis. Annually resolved growth lines in the hinge region and margin of the shell were identified and counted; the age of the oldest clam shell was determined to be at least 106 y. This age represents a considerable increase in the known maximum life span for M. mercenaria, more than doubling the maximum recorded life span of the species (46 y). More than 85% of the clam shells aged had more than 46 annual increments, the previous known maximum life span for the species. In this article we present growth rate and growth performance indicators (the overall growth performance and phi prime) for this record-breaking population of M. mercenaria. Recently discovered models of aging require accurate age records and growth parameters for bivalve populations if they are to be utilized to their full potential.This work was supported by grants from the American Diabetes Association (to Z. U.), American Federation for Aging Research (to A. C.), the University of Oklahoma College of Medicine Alumni Association (to A. C.), the BBSRC (to C. A. R.),the National Institutes of Health (AT006526 and HL077256 to Z. U.; AG022873 and AG025063 to S. N. A.), and the DFG Cluster of Excellence ‘‘Future Ocean’’ (to E. P.)
    • 

    corecore