62 research outputs found

    The Absolute Threshold of Colour Vision in the Horse

    Get PDF
    Arrhythmic mammals are active both during day and night if they are allowed. The arrhythmic horses are in possession of one of the largest terrestrial animal eyes and the purpose of this study is to reveal whether their eye is sensitive enough to see colours at night. During the day horses are known to have dichromatic colour vision. To disclose whether they can discriminate colours in dim light a behavioural dual choice experiment was performed. We started the training and testing at daylight intensities and the horses continued to choose correctly at a high frequency down to light intensities corresponding to moonlight. One Shetland pony mare, was able to discriminate colours at 0.08 cd/m2, while a half blood gelding, still discriminated colours at 0.02 cd/m2. For comparison, the colour vision limit for several human subjects tested in the very same experiment was also 0.02 cd/m2. Hence, the threshold of colour vision for the horse that performed best was similar to that of the humans. The behavioural results are in line with calculations of the sensitivity of cone vision where the horse eye and human eye again are similar. The advantage of the large eye of the horse lies not in colour vision at night, but probably instead in achromatic tasks where presumably signal summation enhances sensitivity

    Scintillate: An open-source graphical viewer for time-series calcium imaging evaluation and pre-processing

    Get PDF
    Background Calcium imaging is based on the detection of minute signal changes in an image time-series encompassing pre- and post-stimuli. Depending on the function of the elicited response, change may be pronounced, as in the case of a genetically encoded calcium-reporter protein, or subtle, as is the case in a bath-applied dye system. Large datasets are thus often acquired and appraised only during post-processing where specific Regions of Interest (ROIs) are examined.    New method  The scintillate software provides a platform allowing for near instantaneous viewing of time-sequenced tiffs within a discrete GUI environment. Whole sequences may be evaluated. In its simplest form scintillate provides change in florescence (ΔF) across the entiretiffimage matrix. Evaluating image intensity level differences across the whole image allows the user to rapidly establish the value of the preparation, withouta prioriROI-selection. Additionally, an implementation of Independent Component Analysis (ICA) provides additional rapid insights into areas of signal change.   Results  We imaged transgenic flies expressing Calcium-sensitive reporter proteins within projection neurons and moth mushroom bodies stained with a Ca2+sensitive bath-applied dye. Instantaneous pre-stimulation background subtraction allowed us to appraise strong genetically encoded neuronal Ca2+responses in flies and weaker, less apparent, responses within moth mushroom bodies. Comparison with existing methods At the time of acquisition, whole matrix ΔF analysis alongside ICA is ordinarily not performed. We found it invaluable, minimising time spent with unresponsive samples, and assisting in optimisation of subsequent acquisitions.   Conclusions  We provide a multi-platform open-source system to evaluate time-series images. Abbreviations ΔF,change of intensity between frames; ICA,independent component analysi

    How Will the Emerging Plurality of Lives Change How We Conceive of and Relate to Life?

    Get PDF
    The project “A Plurality of Lives” was funded and hosted by the Pufendorf Institute for Advanced Studies at Lund University, Sweden. The aim of the project was to better understand how a second origin of life, either in the form of a discovery of extraterrestrial life, life developed in a laboratory, or machines equipped with abilities previously only ascribed to living beings, will change how we understand and relate to life. Because of the inherently interdisciplinary nature of the project aim, the project took an interdisciplinary approach with a research group made up of 12 senior researchers representing 12 different disciplines. The project resulted in a joint volume, an international symposium, several new projects, and a network of researchers in the field, all continuing to communicate about and advance the aim of the project

    Floral to green: mating switches moth olfactory coding and preference

    Get PDF
    Mating induces profound physiological changes in a wide range of insects, leading to behavioural adjustments to match the internal state of the animal. Here, we show for the first time, to our knowledge, that a noctuid moth switches its olfactory response from food to egg-laying cues following mating. Unmated females of the cotton leafworm (Spodoptera littoralis) are strongly attracted to lilac flowers (Syringa vulgaris). After mating, attraction to floral odour is abolished and the females fly instead to green-leaf odour of the larval host plant cotton, Gossypium hirsutum. This behavioural switch is owing to a marked change in the olfactory representation of floral and green odours in the primary olfactory centre, the antennal lobe (AL). Calcium imaging, using authentic and synthetic odours, shows that the ensemble of AL glomeruli dedicated to either lilac or cotton odour is selectively up- and downregulated in response to mating. A clear-cut behavioural modulation as a function of mating is a useful substrate for studies of the neural mechanisms underlying behavioural decisions. Modulation of odour-driven behaviour through concerted regulation of odour maps contributes to our understanding of state-dependent choice and host shifts in insect herbivores

    Discrimination Training with Multimodal Stimuli Changes Activity in the Mushroom Body of the Hawkmoth Manduca sexta

    Get PDF
    The mushroom bodies of the insect brain play an important role in olfactory processing, associative learning and memory. The mushroom bodies show odor-specific spatial patterns of activity and are also influenced by visual stimuli.Functional imaging was used to investigate changes in the in vivo responses of the mushroom body of the hawkmoth Manduca sexta during multimodal discrimination training. A visual and an odour stimulus were presented either together or individually. Initially, mushroom body activation patterns were identical to the odour stimulus and the multimodal stimulus. After training, however, the mushroom body response to the rewarded multimodal stimulus was significantly lower than the response to the unrewarded unimodal odour stimulus, indicating that the coding of the stimuli had changed as a result of training. The opposite pattern was seen when only the unimodal odour stimulus was rewarded. In this case, the mushroom body was more strongly activated by the multimodal stimuli after training. When no stimuli were rewarded, the mushroom body activity decreased for both the multimodal and unimodal odour stimuli. There was no measurable response to the unimodal visual stimulus in any of the experiments. These results can be explained using a connectionist model where the mushroom body is assumed to be excited by olfactory stimulus components, and suppressed by multimodal configurations.Discrimination training with multimodal stimuli consisting of visual and odour cues leads to stimulus specific changes in the in vivo responses of the mushroom body of the hawkmoth

    Multimodal interaction in the insect brain

    No full text
    BackgroundThe magnitude of multimodal enhancement in the brain is believed to depend on the stimulus intensity and timing. Such an effect has been found in many species, but has not been previously investigated in insects.ResultsWe investigated the responses to multimodal stimuli consisting of an odour and a colour in the antennal lobe and mushroom body of the moth Manduca sexta. The mushroom body shows enhanced responses for multimodal stimuli consisting of a general flower odour and a blue colour. No such effect was seen for a bergamot odour. The enhancement shows an inverse effectiveness where the responses to weaker multimodal stimuli are amplified more than those to stronger stimuli. Furthermore, the enhancement depends on the precise timing of the two stimulus components.ConclusionsInsect multimodal processing show both the principle of inverse effectiveness and the existence of an optimal temporal window
    corecore