38 research outputs found

    l-Lactate generates hydrogen peroxide in purified rat liver mitochondria due to the putative l-lactate oxidase localized in the intermembrane space

    Get PDF
    AbstractIn order to ascertain whether and how mitochondria can produce hydrogen peroxide (H2O2) as a result of l-lactate addition, we monitored H2O2 generation in rat liver mitochondria and in submitochondrial fractions free of peroxisomal and cytosolic contamination. We found that H2O2 is produced independently on the respiratory chain with 1:1 stoichiometry with pyruvate, due to a putative flavine-dependent l-lactate oxidase restricted to the intermembrane space. The l-lactate oxidase reaction shows a hyperbolic dependence on l-lactate concentration and is inhibited by NAD+ in a competitive manner, being the enzyme different from the l-lactate dehydrogenase isoenzymes as shown by their pH profiles

    Alzheimer's Proteins, Oxidative Stress, and Mitochondrial Dysfunction Interplay in a Neuronal Model of Alzheimer's Disease

    Get PDF
    In this paper, we discuss the interplay between beta-amyloid (Aβ) peptide, Tau fragments, oxidative stress, and mitochondria in the neuronal model of cerebellar granule neurons (CGNs) in which the molecular events reminiscent of AD are activated. The identification of the death route and the cause/effect relationships between the events leading to death could be helpful to manage the progression of apoptosis in neurodegeneration and to define antiapoptotic treatments acting on precocious steps of the death process. Mitochondrial dysfunction is among the earliest events linked to AD and might play a causative role in disease onset and progression. Recent studies on CGNs have shown that adenine nucleotide translocator (ANT) impairment, due to interaction with toxic N-ter Tau fragment, contributes in a significant manner to bioenergetic failure and mitochondrial dysfunction. These findings open a window for new therapeutic strategies aimed at preserving and/or improving mitochondrial function

    Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death

    Get PDF
    In rat cerebellar granule cells both reactive oxygen species production and release of cytochrome c take place during glutamate toxicity. This investigation was aimed (i) to ascertain whether and how these two processes are related and (ii) to gain insight into the role played by the released cytochrome c in the onset of neurotoxicity. Cytochrome c release takes place owing to the generation of reactive oxygen species both in glutamate-treated cerebellar granule cells and in sister control cultures incubated in the presence of the reactive oxygen species-generating system consisting of xanthine plus xanthine oxidase. In the early phase of neurotoxicity (30-min glutamate exposure) about 40% of the maximum (as measured at 3 h of glutamate exposure) cytochrome c release was found to occur in cerebellar granule cells from mitochondria that were essentially coupled and intact and that had a negligible production of oxygen free radicals. Contrarily, mitochondria from cells treated with glutamate for 3 h were mostly uncoupled and produced reactive oxygen species at a high rate. The cytosolic fraction containing the released cytochrome c was able to transfer electrons from superoxide anion to molecular oxygen via the respiratory chain and was found to partially prevent glutamate toxicity when added externally to cerebellar neurons undergoing necrosis. In the light of these findings, we propose that in the early phase of neurotoxicity, cytochrome c release can be part of a cellular and mitochondrial defense mechanism against oxidative stress

    Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity.

    Get PDF
    Eukaryotic cells contain a population of mitochondria, variable in number and shape, which in turn contain multiple copies of a tiny compact genome (mtDNA) whose expression and function is strictly coordinated with the nuclear one. mtDNA copy number varies between different cell or tissues types, both in response to overall metabolic and bioenergetics demands and as a consequence or cause of specific pathological conditions. Here we present a novel and reliable methodology to assess the effective mtDNA copy number per diploid genome by investigating off-target reads obtained by whole-exome sequencing (WES) experiments. We also investigate whether and how mtDNA copy number correlates with mitochondrial mass, respiratory activity and expression levels. Analyzing six different tissues from three age- and sex-matched human individuals, we found a highly significant linear correlation between mtDNA copy number estimated by qPCR and the frequency of mtDNA off target WES reads. Furthermore, mtDNA copy number showed highly significant correlation with mitochondrial gene expression levels as measured by RNA-Seq as well as with mitochondrial mass and respiratory activity. Our methodology makes thus feasible, at a large scale, the investigation of mtDNA copy number in diverse cell-types, tissues and pathological conditions or in response to specific treatments.This work was supported by Ministero dell'Istruzione, Università e Ricerca (projects PRIN-2009, Micromap [PON01_02589], Virtualab [PON01_01297]) and by Consiglio Nazionale delle Ricerche (progetto strategico “Medicina personalizzata”, progetto strategico “Invecchiamento”, progetto bandiera “Epigen”)

    Role of Oxygen Radicals in Alzheimer’s Disease: Focus on Tau Protein

    No full text
    Oxygen free radical burst is a prominent early event in the pathogenesis of Alzheimer’s disease (AD). Posttranslational modifications of Tau protein, primarily hyper-phosphorylation and truncation, are indicated as critical mediators of AD pathology. This finding is confirmed by the high levels of oxidative stress markers and by the increased susceptibility to oxygen radicals found in cultured neurons and in brains from transgenic animal models expressing toxic Tau forms, in concomitance with a dramatic reduction in their viability/survival. Here, we collect the latest progress in research focused on the reciprocal and dynamic interplay between oxygen radicals and pathological Tau, discussing how these harmful species cooperate and/or synergize in the progression of AD. In this context, a better understanding of the role of oxidative stress in determining Tau pathology, and vice versa, primarily could be able to define novel biomarkers of early stages of human tauopathies, including AD, and then to develop therapeutic strategies aimed at attenuating, halting, or reversing disease progression

    Mitochondria and cystic fibrosis transmembrane conductance regulator dialogue: Some news.

    No full text
    Cystic fibrosis is a progressive, genetic disease that causes persistent lung infections and limits the ability to breathe over time. It results from different possible mutations in the CFTR gene, which encodes the CFTR chloride channel, a protein that controls the movement of salt and water in and out of your body's cells. It follows that the abnormal channel function of the expressed protein on the secretory cell membrane determines the clinical phenotype in its classical form. Novel and more recent studies on mitochondrial bioenergetics - aiming to rediscover a possible role of mitochondria in this disease - provide a springboard for upcoming research to further understand the molecular mechanisms responsible for the involvement of mitochondria in CF and identify the protein/s primarily responsible for the F508del-CFTR-dependent mitochondrial alterations. Here, we review these CFTR-driven mitochondrial defects, thus revealing potential new targets for therapy

    Cellular Redox State Acts as Switch to Determine the Direction of NNT-Catalyzed Reaction in Cystic Fibrosis Cells

    No full text
    The redox states of NAD and NADP are linked to each other in the mitochondria thanks to the enzyme nicotinamide nucleotide transhydrogenase (NNT) which, by utilizing the mitochondrial membrane potential (mΔΨ), catalyzes the transfer of redox potential between these two coenzymes, reducing one at the expense of the oxidation of the other. In order to define NNT reaction direction in CF cells, NNT activity under different redox states of cell has been investigated. Using spectrophotometric and western blotting techniques, the presence, abundance and activity level of NNT were determined. In parallel, the levels of NADPH and NADH as well as of mitochondrial and cellular ROS were also quantified. CF cells showed a 70% increase in protein expression compared to the Wt sample; however, regarding NNT activity, it was surprisingly lower in CF cells than healthy cells (about 30%). The cellular redox state, together with the low mΔΨ, pushes to drive NNT reverse reaction, at the expense of its antioxidant potential, thus consuming NADPH to support NADH production. At the same time, the reduced NNT activity prevents the NADH, produced by the reaction, from causing an explosion of ROS by the damaged respiratory chain, in accordance with the reduced level of mitochondrial ROS in NNT-loss cells. This new information on cellular bioenergetics represents an important building block for further understanding the molecular mechanisms responsible for cellular dysfunction in cystic fibrosis

    Mitochondrial Bioenergetics in Different Pathophysiological Conditions 2.0

    No full text
    Mitochondria, traditionally identified as the powerhouses of eukaryotic cells, constitute a dynamic network of signaling platforms with multifaceted key roles in cell metabolism, proliferation and survival [...

    Mitochondria Can Cross Cell Boundaries: An Overview of the Biological Relevance, Pathophysiological Implications and Therapeutic Perspectives of Intercellular Mitochondrial Transfer

    No full text
    Mitochondria are complex intracellular organelles traditionally identified as the powerhouses of eukaryotic cells due to their central role in bioenergetic metabolism. In recent decades, the growing interest in mitochondria research has revealed that these multifunctional organelles are more than just the cell powerhouses, playing many other key roles as signaling platforms that regulate cell metabolism, proliferation, death and immunological response. As key regulators, mitochondria, when dysfunctional, are involved in the pathogenesis of a wide range of metabolic, neurodegenerative, immune and neoplastic disorders. Far more recently, mitochondria attracted renewed attention from the scientific community for their ability of intercellular translocation that can involve whole mitochondria, mitochondrial genome or other mitochondrial components. The intercellular transport of mitochondria, defined as horizontal mitochondrial transfer, can occur in mammalian cells both in vitro and in vivo, and in physiological and pathological conditions. Mitochondrial transfer can provide an exogenous mitochondrial source, replenishing dysfunctional mitochondria, thereby improving mitochondrial faults or, as in in the case of tumor cells, changing their functional skills and response to chemotherapy. In this review, we will provide an overview of the state of the art of the up-to-date knowledge on intercellular trafficking of mitochondria by discussing its biological relevance, mode and mechanisms underlying the process and its involvement in different pathophysiological contexts, highlighting its therapeutic potential for diseases with mitochondrial dysfunction primarily involved in their pathogenesis
    corecore