22 research outputs found

    Drug conjugation to hyaluronan widens therapeutic indications for ovarian cancer

    Get PDF
    Management of ovarian cancer still requires improvements in therapeutic options. A drug delivery strategy was tested that allows specific targeting of tumor cells in combination with a controlled release of a cytotoxic molecule. To this aim, the efficacy of a loco-regional intraperitoneal treatment with a bioconjugate (ONCOFID-S) derived by chemical linking of SN-38, the active metabolite of irinotecan (CPT-11), to hyaluronan was assessed in a mouse model of ovarian carcinomatosis. In vitro, the bioconjugate selectively interacted with ovarian cancer cells through the CD44 receptor, disclosed a dose-dependent tumor growth inhibition efficacy comparable to that of free SN-38 drug, and inhibited Topoisomerase I function leading to apoptosis by a mechanism involving caspase-3 and -7 activation and PARP cleavage. In vivo, the intraperitoneal administration of ONCOFID-S in tumor-bearing mice did not induce inflammation, and evidenced an improved therapeutic efficacy compared with CPT-11. In conclusion, SN-38 conjugation to hyaluronan significantly improved the profile of in vivo tolerability and widened the field of application of irinotecan. Therefore, this approach can be envisaged as a promising therapeutic strategy for loco-regional treatment of ovarian cancer

    Angiokeratoma Circumscriptum Naeviforme Presenting as a Dark Warty Plaque on the Leg

    Get PDF
    45-year-old man presented with a large, dark, keratotic, warty, and friable plaque on the distal posterior aspect of the left leg (Figure 1, a). The patient reported that the lesion was not present at birth but had appeared approximately at the age of three as an erythematous patch that progressively grew over the time. During adolescence, the surface of the lesion became rough and warty and was easily traumatized due to its location, resulting in recurrent bleeding episodes over a period of years. For this reason, the patient requested lesion removal

    Anti-PSMA CAR-engineered NK-92 Cells: An Off-the-shelf Cell Therapy for Prostate Cancer

    Get PDF
    Prostate cancer (PCa) has become the most common cancer among males in Europe and the USA. Adoptive immunotherapy appears a promising strategy to control the advanced stages of the disease by specifically targeting the tumor, in particular through chimeric antigen receptor T (CAR-T) cell therapy. Despite the advancements of CAR-T technology in the treatment of hematological malignancies, solid tumors still represent a challenge. To overcome current limits, other cellular effectors than T lymphocytes are under study as possible candidates for CAR-engineered cancer immunotherapy. A novel approach involves the NK-92 cell line, which mediates strong cytotoxic responses against a variety of tumor cells but has no effect on non-malignant healthy counterparts. Here, we report a novel therapeutic approach against PCa based on engineering of NK-92 cells with a CAR recognizing the human prostate-specific membrane antigen (PSMA), which is overexpressed in prostatic neoplastic cells. More importantly, the potential utility of NK-92/CAR cells to treat PCa has not yet been explored. Upon CAR transduction, NK-92/CAR cells acquired high and specific lytic activity against PSMA-expressing prostate cancer cells in vitro, and also underwent degranulation and produced high levels of IFN-\u3b3 in response to antigen recognition. Lethal irradiation of the effectors, a safety measure requested for the clinical application of retargeted NK-92 cells, fully abrogated replication but did not impact on phenotype and short-term functionality. PSMA-specific recognition and antitumor activity were retained in vivo, as adoptive transfer of irradiated NK-92/CAR cells in prostate cancer-bearing mice restrained tumor growth and improved survival. Anti-PSMA CAR-modified NK-92 cells represent a universal, off-the-shelf, renewable, and cost-effective product endowed with relevant potentialities as a therapeutic approach for PCa immunotherapy

    P06.06 Adoptive cell therapy of triple negative breast cancer with redirected cytokine-induced killer cells

    Get PDF
    Background Cytokine-Induced Killer (CIK) cells share several functional and phenotypical properties of both T and natural killer (NK) cells, and represent an attractive approach for cell-based immunotherapy as they do not require antigen-specific priming for tumor cell recognition, and can be efficiently and rapidly expanded in vitro. We recently reported that CIK cells have a relevant expression of FcÎłRIIIa (CD16a), which can be exploited in combination with clinical-grade monoclonal antibodies (mAbs) to redirect their lytic activity in an antigen-specific manner. Here, we report the assessment and the efficacy of this combined approach against triple negative breast cancer (TNBC), an aggressive tumor that still requires reliable therapeutic options. Materials and methods Different primitive and metastatic TNBC cancer mouse models were established in NSG mice, either by implanting patient-derived TNBC samples or MDA-MB-231 cells subcutaneously or orthotopically into the mammary fat pad, or by injecting MDA-MB-231 cells intravenously. The combined treatment consisted in the repeated intratumoral or intravenous injection of CIK cells and cetuximab, while the mAb alone or CIK cells plus Rituximab served as control treatments. Tumor growth and metastasis were monitored by bioluminescence or immunohistochemistry, and survival was recorded. Results CIK cells plus cetuximab significantly restrained primitive tumor growth in mice, either implanted with TNBC patient-derived tumor xenografts or injected with MDA-MB-231 TNBC cell line. Moreover, in both experimental and spontaneous metastatic models the combined approach almost completely abolished metastasis spreading and dramatically improved survival. The antigen-specific mAb favored tumor and metastasis tissue infiltration by CIK cells, and in particular led to an enrichment of the CD16a+ subset. Conclusions Data highlight the potentiality of a novel immunotherapy approach where a non-specific cytotoxic cell population can be converted into tumor-specific effectors with clinical-grade antibodies, thus providing not only a therapeutic option for TNBC but also a valid alternative to more complex approaches based on chimeric antigen receptor-engineered cells. Disclosure Information R. Sommaggio: None. E. Cappuzzello: None. A. Dalla Pieta: None. P. Palmerini: None. A. Tosi: None. D. Carpanese: None. L. Nicole: None. A. Rosato: None

    Control of NTMs and integrated multi-actuator plasma control on TCV

    Get PDF
    The control of 2/1 neoclassical tearing modes (NTMs) with electron cyclotron (EC) waves has been studied both experimentally and numerically on TCV. Dynamic evolutions of NTMs along with time-varying deposition locations of the control beam have been studied in detail. The prevention of NTMs by means of preemptive EC (i.e. the control beam is switched on before the mode onset) has also been explored. A small sinusoidal sweeping with full amplitude of 0.07 (normalized to the minor radius) has been added to the control beam in two of the experiments to facilitate the comparison between NTM stabilization and prevention. It is shown that the prevention of NTMs is more efficient than NTM stabilization in terms of the minimum EC power required. Interpretative simulations with the Modified Rutherford Equation (MRE) have been performed to better quantify various effects, with coefficients well defined by dedicated experiments. Specifically, in order to obtain more insight on the dominant dependencies, a simple ad-hoc analytical model has been proposed to evaluate the time-varying classical stability index Δ' in the test discharges, based on the Δ'-triggered nature of these 2/1 NTMs. This allows simulating well the entire island width evolution with the MRE, starting from zero width and including both NTM stabilization and prevention cases for the first time. The exploration of NTM physics and control has facilitated the development of an NTM controller that is independent of the particular features of TCV and has been included in a generic plasma control system (PCS) framework. Integrated control of 2/1 NTMs, plasma β (the ratio of plasma pressure to magnetic pressure) and model-estimated safety factor q profiles has been demonstrated on TCV

    Drug conjugation to hyaluronan widens therapeutic indications for ovarian cancer

    No full text
    ABSTRACT Management of ovarian cancer still requires improvements in therapeutic In vitro, the bioconjugate selectively interacted with ovarian cancer cells through the CD44 receptor, disclosed a dose-dependent tumor growth inhibition efficacy comparable to that of free SN-38 drug, and inhibited Topoisomerase I function leading to apoptosis by a mechanism involving caspase-3 and -7 activation and PARP cleavage. In vivo, the intraperitoneal administration of ONCOFID-S in tumor-bearing mice did not induce inflammation, and evidenced an improved therapeutic efficacy compared with CPT-11. In conclusion, SN-38 conjugation to hyaluronan significantly improved the profile of in vivo tolerability and widened the field of application of irinotecan. Therefore, this approach can be envisaged as a promising therapeutic strategy for loco-regional treatment of ovarian cancer
    corecore