81 research outputs found

    The epidemiologic impact and cost-effectiveness of new tuberculosis vaccines on multidrug-resistant tuberculosis in India and China.

    Get PDF
    BACKGROUND: Despite recent advances through the development pipeline, how novel tuberculosis (TB) vaccines might affect rifampicin-resistant and multidrug-resistant tuberculosis (RR/MDR-TB) is unknown. We investigated the epidemiologic impact, cost-effectiveness, and budget impact of hypothetical novel prophylactic prevention of disease TB vaccines on RR/MDR-TB in China and India. METHODS: We constructed a deterministic, compartmental, age-, drug-resistance- and treatment history-stratified dynamic transmission model of tuberculosis. We introduced novel vaccines from 2027, with post- (PSI) or both pre- and post-infection (P&PI) efficacy, conferring 10 years of protection, with 50% efficacy. We measured vaccine cost-effectiveness over 2027-2050 as USD/DALY averted-against 1-times GDP/capita, and two healthcare opportunity cost-based (HCOC), thresholds. We carried out scenario analyses. RESULTS: By 2050, the P&PI vaccine reduced RR/MDR-TB incidence rate by 71% (UI: 69-72) and 72% (UI: 70-74), and the PSI vaccine by 31% (UI: 30-32) and 44% (UI: 42-47) in China and India, respectively. In India, we found both USD 10 P&PI and PSI vaccines cost-effective at the 1-times GDP and upper HCOC thresholds and P&PI vaccines cost-effective at the lower HCOC threshold. In China, both vaccines were cost-effective at the 1-times GDP threshold. P&PI vaccine remained cost-effective at the lower HCOC threshold with 49% probability and PSI vaccines at the upper HCOC threshold with 21% probability. The P&PI vaccine was predicted to avert 0.9 million (UI: 0.8-1.1) and 1.1 million (UI: 0.9-1.4) second-line therapy regimens in China and India between 2027 and 2050, respectively. CONCLUSIONS: Novel TB vaccination is likely to substantially reduce the future burden of RR/MDR-TB, while averting the need for second-line therapy. Vaccination may be cost-effective depending on vaccine characteristics and setting

    Immunization with Cocktail of HIV-Derived Peptides in Montanide ISA-51 Is Immunogenic, but Causes Sterile Abscesses and Unacceptable Reactogenicity

    Get PDF
    BACKGROUND: A peptide vaccine was produced containing B and T cell epitopes from the V3 and C4 Envelope domains of 4 subtype B HIV-1 isolates (MN, RF, CanO, & Ev91). The peptide mixture was formulated as an emulsion in incomplete Freund's adjuvant (IFA). METHODS: Low-risk, healthy adult subjects were enrolled in a randomized, placebo-controlled dose-escalation study, and selected using criteria specifying that 50% in each study group would be HLA-B7+. Immunizations were scheduled at 0, 1, and 6 months using a total peptide dose of 1 or 4 mg. Adaptive immune responses in16 vaccine recipients and two placebo recipients after the 2nd immunization were evaluated using neutralization assays of sera, as well as ELISpot and ICS assays of cryopreserved PBMCs to assess CD4 and CD8 T-cell responses. In addition, (51)Cr release assays were performed on fresh PBMCs following 14-day stimulation with individual vaccine peptide antigens. RESULTS: 24 subjects were enrolled; 18 completed 2 injections. The study was prematurely terminated because 4 vaccinees developed prolonged pain and sterile abscess formation at the injection site-2 after dose 1, and 2 after dose 2. Two other subjects experienced severe systemic reactions consisting of headache, chills, nausea, and myalgia. Both reactions occurred after the second 4 mg dose. The immunogenicity assessments showed that 6/8 vaccinees at each dose level had detectable MN-specific neutralizing (NT) activity, and 2/7 HLA-B7+ vaccinees had classical CD8 CTL activity detected. However, using both ELISpot and ICS, 8/16 vaccinees (5/7 HLA-B7+) and 0/2 controls had detectable vaccine-specific CD8 T-cell responses. Subjects with moderate or severe systemic or local reactions tended to have more frequent T cell responses and higher antibody responses than those with mild or no reactions. CONCLUSIONS: The severity of local responses related to the formulation of these four peptides in IFA is clinically unacceptable for continued development. Both HIV-specific antibody and T cell responses were induced and the magnitude of response correlated with the severity of local and systemic reactions. If potent adjuvants are necessary for subunit vaccines to induce broad and durable immune responses, careful, incremental clinical evaluation is warranted to minimize the risk of adverse events. TRIAL REGISTRATION: ClinicalTrials.gov NCT00000886

    Cross-Species Transmission of a Novel Adenovirus Associated with a Fulminant Pneumonia Outbreak in a New World Monkey Colony

    Get PDF
    Adenoviruses are DNA viruses that naturally infect many vertebrates, including humans and monkeys, and cause a wide range of clinical illnesses in humans. Infection from individual strains has conventionally been thought to be species-specific. Here we applied the Virochip, a pan-viral microarray, to identify a novel adenovirus (TMAdV, titi monkey adenovirus) as the cause of a deadly outbreak in a closed colony of New World monkeys (titi monkeys; Callicebus cupreus) at the California National Primate Research Center (CNPRC). Among 65 titi monkeys housed in a building, 23 (34%) developed upper respiratory symptoms that progressed to fulminant pneumonia and hepatitis, and 19 of 23 monkeys, or 83% of those infected, died or were humanely euthanized. Whole-genome sequencing of TMAdV revealed that this adenovirus is a new species and highly divergent, sharing <57% pairwise nucleotide identity with other adenoviruses. Cultivation of TMAdV was successful in a human A549 lung adenocarcinoma cell line, but not in primary or established monkey kidney cells. At the onset of the outbreak, the researcher in closest contact with the monkeys developed an acute respiratory illness, with symptoms persisting for 4 weeks, and had a convalescent serum sample seropositive for TMAdV. A clinically ill family member, despite having no contact with the CNPRC, also tested positive, and screening of a set of 81 random adult blood donors from the Western United States detected TMAdV-specific neutralizing antibodies in 2 individuals (2/81, or 2.5%). These findings raise the possibility of zoonotic infection by TMAdV and human-to-human transmission of the virus in the population. Given the unusually high case fatality rate from the outbreak (83%), it is unlikely that titi monkeys are the native host species for TMAdV, and the natural reservoir of the virus is still unknown. The discovery of TMAdV, a novel adenovirus with the capacity to infect both monkeys and humans, suggests that adenoviruses should be monitored closely as potential causes of cross-species outbreaks

    Phase 2b Controlled Trial of M72/AS01E Vaccine to Prevent Tuberculosis.

    Get PDF
    BACKGROUND: A vaccine to interrupt the transmission of tuberculosis is needed. METHODS: We conducted a randomized, double-blind, placebo-controlled, phase 2b trial of the M72/AS01E tuberculosis vaccine in Kenya, South Africa, and Zambia. Human immunodeficiency virus (HIV)-negative adults 18 to 50 years of age with latent M. tuberculosis infection (by interferon-γ release assay) were randomly assigned (in a 1:1 ratio) to receive two doses of either M72/AS01E or placebo intramuscularly 1 month apart. Most participants had previously received the bacille Calmette-Guérin vaccine. We assessed the safety of M72/AS01E and its efficacy against progression to bacteriologically confirmed active pulmonary tuberculosis disease. Clinical suspicion of tuberculosis was confirmed with sputum by means of a polymerase-chain-reaction test, mycobacterial culture, or both. RESULTS: We report the primary analysis (conducted after a mean of 2.3 years of follow-up) of the ongoing trial. A total of 1786 participants received M72/AS01E and 1787 received placebo, and 1623 and 1660 participants in the respective groups were included in the according-to-protocol efficacy cohort. A total of 10 participants in the M72/AS01E group met the primary case definition (bacteriologically confirmed active pulmonary tuberculosis, with confirmation before treatment), as compared with 22 participants in the placebo group (incidence, 0.3 cases vs. 0.6 cases per 100 person-years). The vaccine efficacy was 54.0% (90% confidence interval [CI], 13.9 to 75.4; 95% CI, 2.9 to 78.2; P=0.04). Results for the total vaccinated efficacy cohort were similar (vaccine efficacy, 57.0%; 90% CI, 19.9 to 76.9; 95% CI, 9.7 to 79.5; P=0.03). There were more unsolicited reports of adverse events in the M72/AS01E group (67.4%) than in the placebo group (45.4%) within 30 days after injection, with the difference attributed mainly to injection-site reactions and influenza-like symptoms. Serious adverse events, potential immune-mediated diseases, and deaths occurred with similar frequencies in the two groups. CONCLUSIONS: M72/AS01E provided 54.0% protection for M. tuberculosis-infected adults against active pulmonary tuberculosis disease, without evident safety concerns. (Funded by GlaxoSmithKline Biologicals and Aeras; ClinicalTrials.gov number, NCT01755598 .)

    Designing tuberculosis vaccine efficacy trials – lessons from recent studies

    No full text
    Introduction: Tuberculosis (TB) is the leading infectious killer globally and new TB vaccines will be crucial to ending the epidemic. Since the introduction in 1921 of the only currently licensed TB vaccine, BCG, very few novel vaccine candidates or strategies have advanced into clinical efficacy trials. Areas covered: Recently, however, two TB vaccine efficacy trials with novel designs have reported positive results and are now driving new momentum in the field. They are the first Prevention of Infection trial, evaluating the H4:IC31 candidate or BCG revaccination in high-risk adolescents and a Prevention of Disease trial evaluating the M72/AS01E candidate in M.tuberculosis-infected, healthy adults. These trials are briefly reviewed, and lessons learned are proposed to help inform the design of future efficacy trials. The references cited were chosen by the author based on PubMed searches to provide context for the opinions expressed in this Perspective article. Expert opinion: The opportunities created by these two trials for gaining critically important knowledge are game-changing for TB vaccine development. Their results clearly establish feasibility in the relatively near term of developing novel, effective vaccines that could be crucial to ending the TB epidemic

    What's new in tuberculosis vaccines?

    No full text
    Over the past 10 years, tuberculosis (TB) vaccine development has resurged as an active area of investigation. The renewed interest has been stimulated by the recognition that, although BCG is delivered to approximately 90% of all neonates globally through the Expanded Programme on Immunization, Mycobacterium tuberculosis continues to cause over 8 million new cases of TB and over 2 million deaths annually. Over one hundred TB vaccine candidates have been developed, using different approaches to inducing protective immunity. Candidate vaccines are typically screened in small animal models of primary TB disease for their ability to protect against a virulent strain of M. tuberculosis. The most promising are now beginning to enter human safety trials, marking real progress in this field for the first time in 80 years

    What's new in tuberculosis vaccines?

    No full text
    Over the past 10 years, tuberculosis (TB) vaccine development has resurged as an active area of investigation. The renewed interest has been stimulated by the recognition that, although BCG is delivered to approximately 90% of all neonates globally through the Expanded Programme on Immunization, Mycobacterium tuberculosis continues to cause over 8 million new cases of TB and over 2 million deaths annually. Over one hundred TB vaccine candidates have been developed, using different approaches to inducing protective immunity. Candidate vaccines are typically screened in small animal models of primary TB disease for their ability to protect against a virulent strain of M. tuberculosis. The most promising are now beginning to enter human safety trials, marking real progress in this field for the first time in 80 years
    • …
    corecore