1,574 research outputs found

    Forestry for a Low-Carbon Future: Integrating Forests and Wood Products Into Climate Change Strategies

    Get PDF
    An historic achievement was realized in Paris in December 2015 when most of the world’s greenhouse-gas (GHG) emitting countries voluntarily submitted their post-2020 plans for action on climate change. These Intended Nationally Determined Contribution plans are aimed at keeping the global temperature rise well below 2°C, but apparently, the plans will require substantial improvement to attain that goal.1 Adjusting these plans is undoubtedly complex, but regardless of the specifics, it is difficult to imagine any mitigation or adaptation plan that does not include forests and other woody vegetation. By the process of photosynthesis, plants take in the GHG carbon dioxide (CO2) from the atmosphere, and use energy from the sun to power chemical reactions with water to form sugar, a building block of life. Woody plants can accrue huge amounts of carbon from the atmosphere and these stocks persist: globally, forests store 861 (±66) Petagrams of carbon.2 This process of carbon removal and deposition into longlived storages such as forests is defined as carbon sequestration by the United Nations Framework Convention on Climate Change.3 Natural processes such as plant respiration and organic matter decomposition, as well as both natural and human-caused disturbances, emit CO2 back into the atmosphere. As such, many factors interact to determine whether a forest will function as a sink that reduces atmospheric CO2 levels and mitigates global warming, or as a 2 source of CO2. Fast-growing and well-managed forests capture more CO2 from the atmosphere than they emit and can accumulate large stocks of carbon in the vegetation and soil.4 On the other hand, deforestation represents a loss in the capacity to absorb CO2 from the atmosphere and also results in emissions of CO2. Land-use change and forestry accounted for 10-12% of global GHG emissions from 2000-2011. However, forests, as a result of their growth, were a net sink for CO2 over the 2000-2009 period by a variety of estimation methods.5 Given the critical but variable role of forests in global carbon cycling, it is crucial to communicate to policymakers and other experts involved in climate-change planning how basic forest biology and forest management translate into climate warming mitigation (hereafter referred to simply as ‘mitigation’). This Report by the Food and Agriculture Organization addresses this pressing need at an opportune time. The development of the Report was initiated during the “International Online Conference on the Economics of Climate Change Mitigation Options in the Forest Sector,” which was convened in February 2015. The Report’s goal is to provide urgently required information that is relevant for making decisions regarding policy that aims to foster low-carbon-emission forests. Moreover, it provides guidelines for enhancing socioeconomic benefits of forests in ways that can be tailored to specific needs at the regional level. An Advisory Committee formulated the Report’s outline, organized to contain an Executive Summary, Introduction, six chapters (summarized below) and a Conclusion. Each Chapter concludes with ‘Key messages’ listed as bulleted points. Most Chapters also contain sub-sections entitled ‘Bottlenecks in harnessing potentials‘ and ‘Embracing opportunities.’ There are contributions from 113 experts and 22 expert reviewers provided comments on the draft. Acronyms abound, but there is a comprehensive list of definitions at the beginning of the Report

    Public Perception of Engineering Technology: A Literature Review

    Get PDF
    Engineering technology describes a field closely related to engineering in which practical application of learned concepts is emphasized over theoretical knowledge. Although an increasing amount of emphasis is being placed on the importance of this experiential learning in all engineering curricula, and the specifics of engineering technology’s place among engineering and technical fields is becoming clearer, there are still significant gaps in our understanding of several key aspects of this field. One of these aspects is its perception by the general public, which is important in, among other things, determining the employability of engineering technology program graduates and encouraging the development of engineering technology curricula. Currently, existing literature on the subject is sparse, especially compared to the number and extent of similar studies done in related fields; the studies that are performed on the topic are generally restricted to a very specific demographic, and are not easily applicable to the entire population of engineering technology students and professionals. However, what information does exist suggests that this lack of research impedes the professional growth of those who are involved in engineering technology, including restricting the ability of faculty to recruit students interested in engineering technology programs, decreasing the effectiveness of guidance available to those students through advisors and outside programs, and preventing inequities currently present in the engineering field as a whole from being addressed. By acknowledging the gaps in current knowledge, direction for future research may be provided; thus, this review seeks to outline what research already exists on the public perception of engineering technology, and thereby highlight specific areas in which our understanding of this perception is particularly poor

    The Seven Deadly Sins of Communication Research

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74955/1/j.1460-2466.2008.00382.x.pd

    Field repair and replacement part fabrication of military components using ultrasonic consolidation cold metal deposition

    Get PDF
    Timely repair and replacement of military components without degrading material properties offers tremendous opportunities for cost and schedule savings on a number of military platforms. Effective field-based additive manufacturing repair approaches have proven difficult to develop, as conventional additive metal deposition technologies typically include a molten phase transformation and controlled inert deposition environments. The molten stage of laser and electron beam based additive processes unfortunately results in large dimensional and microstructural changes to the component being repaired or re-fabricated. As a result, high residual stresses and unpredictable ductility profiles in the repair area, or the re-fabricated part, make the final product unsafe for redeployment. Specifically, the heat affected zone associated with traditional deposition-based repair methods can produce a low strength, non-homogenous region at the joint; these changes in the materials properties of the repaired parts are detrimental to the fatigue life, and are a major concern where cyclic loading is experienced. The use of solid state high power Ultrasonic Consolidation (UC) technologies avoids the liquid-solid transition complexity and creates a predictable “cold” bond. This method then allows for strong, homogenous structures to be manufactured and repaired in the field and opens the door for the use of high strength repair material that may reduce the frequency of future failure itself. In addition, UC further offers the opportunity to provide enhanced functionality and ruggedness to a component either during repair or from original manufacture by allowing the embedding of passive and functional elements into the new fabricated component or feature

    Structuring communication relationships for interprofessional teamwork (SCRIPT): a cluster randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite a burgeoning interest in using interprofessional approaches to promote effective collaboration in health care, systematic reviews find scant evidence of benefit. This protocol describes the first cluster randomized controlled trial (RCT) to design and evaluate an intervention intended to improve interprofessional collaborative communication and patient-centred care.</p> <p>Objectives</p> <p>The objective is to evaluate the effects of a four-component, hospital-based staff communication protocol designed to promote collaborative communication between healthcare professionals and enhance patient-centred care.</p> <p>Methods</p> <p>The study is a multi-centre mixed-methods cluster randomized controlled trial involving twenty clinical teaching teams (CTTs) in general internal medicine (GIM) divisions of five Toronto tertiary-care hospitals. CTTs will be randomly assigned either to receive an intervention designed to improve interprofessional collaborative communication, or to continue usual communication practices.</p> <p>Non-participant naturalistic observation, shadowing, and semi-structured, qualitative interviews were conducted to explore existing patterns of interprofessional collaboration in the CTTs, and to support intervention development. Interviews and shadowing will continue during intervention delivery in order to document interactions between the intervention settings and adopters, and changes in interprofessional communication.</p> <p>The primary outcome is the rate of unplanned hospital readmission. Secondary outcomes are length of stay (LOS); adherence to evidence-based prescription drug therapy; patients' satisfaction with care; self-report surveys of CTT staff perceptions of interprofessional collaboration; and frequency of calls to paging devices. Outcomes will be compared on an intention-to-treat basis using adjustment methods appropriate for data from a cluster randomized design.</p> <p>Discussion</p> <p>Pre-intervention qualitative analysis revealed that a substantial amount of interprofessional interaction lacks key core elements of collaborative communication such as self-introduction, description of professional role, and solicitation of other professional perspectives. Incorporating these findings, a four-component intervention was designed with a goal of creating a culture of communication in which the fundamentals of collaboration become a routine part of interprofessional interactions during unstructured work periods on GIM wards.</p> <p>Trial registration</p> <p>Registered with National Institutes of Health as NCT00466297.</p

    Expectations vs. Experience: Western Washington University\u27s CSXQ/CSEQ Findings

    Get PDF
    A pre/post survey of expectations (pre) and actual experiences (post) of first-time, in-coming freshmen. Pre survey (CSXQ) administered summer 2002; post survey (CSEQ) administered spring 2003

    The Radio Luminosity Function and Galaxy Evolution in the Coma Cluster

    Get PDF
    We investigate the radio luminosity function and radio source population for two fields within the Coma cluster of galaxies, with the fields centered on the cluster core and southwest infall region and each covering about half a square degree. Using VLA data with a typical rms sensitivity of 28 (mu)Jy per 4.4" beam, we identify 249 radio sources with optical counterparts brighter than r = 22 (equivalent to M(sub r) = -13 for cluster member galaxies). Comprehensive optical spectroscopy identifies 38 of these as members of the Coma cluster, evenly split between sources powered by an active nucleus and sources powered by active star formation. The radio-detected star-forming galaxies are restricted to radio luminosities between about 10(exp 21) and 10(exp 22) W/Hz, an interesting result given that star formation dominates field radio luminosity functions below about 10(exp 23) W/Hz. The majority of the radio-detected star-forming galaxies have characteristics of starbursts, including high specific star formation rates and optical spectra with strong emission lines. In conjunction with prior studies on post-starburst galaxies within the Coma cluster, this is consistent with a picture in which late-type galaxies entering Coma undergo a starburst prior to a rapid cessation of star formation. Optically bright elliptical galaxies (Mr less than or equals -20.5) make the largest contribution to the radio luminosity function at both the high (> approx. 3x10(exp 22) W/Hz) and low (< approx. 10(exp 21) W/Hz) ends. Through a stacking analysis of these optically-bright ellipticals we find that they continue to harbor radio sources down to luminosities as faint as 3x10(exp 19) W/Hz. However, contrary to published results for the Virgo cluster we find no evidence for the existence of a population of optically faint (M(sub r) approx. equals -14) dwarf ellipticals hosting strong radio AGN
    • 

    corecore