260 research outputs found

    A Monte Carlo Event Generator for W Off-shell Pair Production including Higher Order Electromagnetic Radiative Corrections

    Full text link
    We present the Monte Carlo event generator {\tt WOPPER} for pair production of WW's and their decays at high energy e+ee^+e^- colliders. {\tt WOPPER} includes the effects from finite WW width and focusses on the calculation of higher order electromagnetic corrections in the leading log approximation including soft photon exponentiation and explicit generation of exclusive hard photons.Comment: Contribution to the Second Workshop -- Munich, Annecy, Hamburg: e+ee^+e^- Collisions at 500~GeV: The Physics Potential, November 20, 1992, to April 3, 1993. LaTeX, 6 pages + 4 uuencoded EPS figures, IKDA 93/28, SI-93-

    QED collinear radiation factors in the next-to-leading logarithmic approximation

    Get PDF
    The effect of the collinear photon radiation by charged particles is considered in the second order of the perturbation theory. Double and single photon radiation is evaluated. The corresponding radiation factors are obtained. The QED renormalization group approach is exploited in the next-to-leading order. The results are suited to perform a systematic treatment of the second order next-to-leading logarithmic radiative corrections to various processes either analytically or numerically.Comment: 8 page

    Radiatively corrected shape function for inclusive heavy hadron decays

    Get PDF
    We discuss the non-perturbative and the radiative corrections to inclusive B decays from the point of view known from QED corrections to high energy e^+ e^- processes. Here the leading contributions can be implemented through the so called ``radiator function'' which corresponds to the shape function known in heavy hadron decays. In this way some new insight into the origin of the shape function is obtained. As a byproduct, a parameterization of the radiatively corrected shape function is suggested which can be implemented in Monte Carlo studies of inclusive heavy hadron decays.Comment: LaTeX, uses a4, graphicx and psfrag, 10 pages. The complete paper is also available at http://www-ttp.physik.uni-karlsruhe.de/Preprints

    On-Line AdaTron Learning of Unlearnable Rules

    Full text link
    We study the on-line AdaTron learning of linearly non-separable rules by a simple perceptron. Training examples are provided by a perceptron with a non-monotonic transfer function which reduces to the usual monotonic relation in a certain limit. We find that, although the on-line AdaTron learning is a powerful algorithm for the learnable rule, it does not give the best possible generalization error for unlearnable problems. Optimization of the learning rate is shown to greatly improve the performance of the AdaTron algorithm, leading to the best possible generalization error for a wide range of the parameter which controls the shape of the transfer function.)Comment: RevTeX 17 pages, 8 figures, to appear in Phys.Rev.

    QED Corrections to Deep Inelastic Scattering with Tagged Photons at HERA

    Full text link
    We calculate the QED corrections to deep inelastic scattering with tagged photons at HERA in the leading logarithmic approximation. Due to the special experimental setup, two large scales appear in the calculation that lead to two large logarithms of comparable size. The relation of our formalism to the conventional structure function formalism is outlined. We present some numerical results and compare with previous calculations.Comment: 7 pages, REVTeX, 2 figures; published versio

    Storage capacity of a constructive learning algorithm

    Full text link
    Upper and lower bounds for the typical storage capacity of a constructive algorithm, the Tilinglike Learning Algorithm for the Parity Machine [M. Biehl and M. Opper, Phys. Rev. A {\bf 44} 6888 (1991)], are determined in the asymptotic limit of large training set sizes. The properties of a perceptron with threshold, learning a training set of patterns having a biased distribution of targets, needed as an intermediate step in the capacity calculation, are determined analytically. The lower bound for the capacity, determined with a cavity method, is proportional to the number of hidden units. The upper bound, obtained with the hypothesis of replica symmetry, is close to the one predicted by Mitchinson and Durbin [Biol. Cyber. {\bf 60} 345 (1989)].Comment: 13 pages, 1 figur

    Event Generators for Bhabha Scattering

    Get PDF
    The results obtained by the "Event Generators for Bhabha Scattering" working group during the CERN Workshop "Physics at LEP2" (1994/1995) are presented.Comment: 70 pages, PostScript file. To appear in the Report of the Workshop on Physics at LEP2, G. Altarelli T. Sjostrand and F. Zwirner ed

    Diffusion with random distribution of static traps

    Full text link
    The random walk problem is studied in two and three dimensions in the presence of a random distribution of static traps. An efficient Monte Carlo method, based on a mapping onto a polymer model, is used to measure the survival probability P(c,t) as a function of the trap concentration c and the time t. Theoretical arguments are presented, based on earlier work of Donsker and Varadhan and of Rosenstock, why in two dimensions one expects a data collapse if -ln[P(c,t)]/ln(t) is plotted as a function of (lambda t)^{1/2}/ln(t) (with lambda=-ln(1-c)), whereas in three dimensions one expects a data collapse if -t^{-1/3}ln[P(c,t)] is plotted as a function of t^{2/3}lambda. These arguments are supported by the Monte Carlo results. Both data collapses show a clear crossover from the early-time Rosenstock behavior to Donsker-Varadhan behavior at long times.Comment: 4 pages, 6 figure
    corecore