28 research outputs found
Statin-induced myopathic changes in primary human muscle cells and reversal by a prostaglandin F2 alpha analogue
Statin-related muscle side effects are a constant healthcare problem since patient compliance is dependent on side effects. Statins reduce plasma cholesterol levels and can prevent secondary cardiovascular diseases. Although statin-induced muscle damage has been studied, preventive or curative therapies are yet to be reported. We exposed primary human muscle cell populations (n = 22) to a lipophilic (simvastatin) and a hydrophilic (rosuvastatin) statin and analyzed their expressome. Data and pathway analyses included GOrilla, Reactome and DAVID. We measured mevalonate intracellularly and analyzed eicosanoid profiles secreted by human muscle cells. Functional assays included proliferation and differentiation quantification. More than 1800 transcripts and 900 proteins were differentially expressed after exposure to statins. Simvastatin had a stronger effect on the expressome than rosuvastatin, but both statins influenced cholesterol biosynthesis, fatty acid metabolism, eicosanoid synthesis, proliferation, and differentiation of human muscle cells. Cultured human muscle cells secreted ω-3 and ω-6 derived eicosanoids and prostaglandins. The ω-6 derived metabolites were found at higher levels secreted from simvastatin-treated primary human muscle cells. Eicosanoids rescued muscle cell differentiation. Our data suggest a new aspect on the role of skeletal muscle in cholesterol metabolism. For clinical practice, the addition of omega-n fatty acids might be suitable to prevent or treat statin-myopathy
Adult and Embryonic GAD Transcripts Are Spatiotemporally Regulated during Postnatal Development in the Rat Brain
GABA (gamma-aminobutyric acid), the main inhibitory neurotransmitter in the brain, is synthesized by glutamic acid decarboxylase (GAD). GAD exists in two adult isoforms, GAD65 and GAD67. During embryonic brain development at least two additional transcripts exist, I-80 and I-86, which are distinguished by insertions of 80 or 86 bp into GAD67 mRNA, respectively. Though it was described that embryonic GAD67 transcripts are not detectable during adulthood there are evidences suggesting re-expression under certain pathological conditions in the adult brain. In the present study we systematically analyzed for the first time the spatiotemporal distribution of different GADs with emphasis on embryonic GAD67 mRNAs in the postnatal brain using highly sensitive methods. hybridizations confirmed the occurrence of embryonic GAD67 transcripts in the olfactory bulb and furthermore detected their localization mainly in the subventricular zone and the rostral migratory stream.Embryonic GAD67 transcripts can hardly be detected in the adult brain, except for specific regions associated with neurogenesis and high synaptic plasticity. Therefore a functional role in processes like proliferation, migration or synaptogenesis is suggested
Identification of Ischemic Regions in a Rat Model of Stroke
Investigations following stroke first of all require information about the spatio-temporal dimension of the ischemic core as well as of perilesional and remote affected tissue. Here we systematically evaluated regions differently impaired by focal ischemia.Wistar rats underwent a transient 30 or 120 min suture-occlusion of the middle cerebral artery (MCAO) followed by various reperfusion times (2 h, 1 d, 7 d, 30 d) or a permanent MCAO (1 d survival). Brains were characterized by TTC, thionine, and immunohistochemistry using MAP2, HSP72, and HSP27. TTC staining reliably identifies the infarct core at 1 d of reperfusion after 30 min MCAO and at all investigated times following 120 min and permanent MCAO. Nissl histology denotes the infarct core from 2 h up to 30 d after transient as well as permanent MCAO. Absent and attenuated MAP2 staining clearly identifies the infarct core and perilesional affected regions at all investigated times, respectively. HSP72 denotes perilesional areas in a limited post-ischemic time (1 d). HSP27 detects perilesional and remote impaired tissue from post-ischemic day 1 on. Furthermore a simultaneous expression of HSP72 and HSP27 in perilesional neurons was revealed.TTC and Nissl staining can be applied to designate the infarct core. MAP2, HSP72, and HSP27 are excellent markers not only to identify perilesional and remote areas but also to discriminate affected neuronal and glial populations. Moreover markers vary in their confinement to different reperfusion times. The extent and consistency of infarcts increase with prolonged occlusion of the MCA. Therefore interindividual infarct dimension should be precisely assessed by the combined use of different markers as described in this study
Is the Hyporheic Zone Relevant beyond the Scientific Community?
Rivers are important ecosystems under continuous anthropogenic stresses. The hyporheic
zone is a ubiquitous, reactive interface between the main channel and its surrounding sediments
along the river network. We elaborate on the main physical, biological, and biogeochemical drivers
and processes within the hyporheic zone that have been studied by multiple scientific disciplines for
almost half a century. These previous efforts have shown that the hyporheic zone is a modulator for
most metabolic stream processes and serves as a refuge and habitat for a diverse range of aquatic
organisms. It also exerts a major control on river water quality by increasing the contact time with
reactive environments, which in turn results in retention and transformation of nutrients, trace
organic compounds, fine suspended particles, and microplastics, among others. The paper showcases
the critical importance of hyporheic zones, both from a scientific and an applied perspective, and
their role in ecosystem services to answer the question of the manuscript title. It identifies major
research gaps in our understanding of hyporheic processes. In conclusion, we highlight the potential
of hyporheic restoration to efficiently manage and reactivate ecosystem functions and services in
river corridors
Overview of differently affected regions following 30 min, 120 min, and permanent MCAO (black: infarct core; striped: perilesional regions; light grey: remote areas).
<p>The maximum expansion of each region is displayed, whereby 120 min and permanent MCAO revealed the same maxima. Additionally staining procedures used in this study are displayed relating to their applicability to detect these differently affected regions at various reperfusion times (2 h, 1 d, 7 d, 30 d).</p
TTC-stained brain sections at various reperfusion times following transient (30 min and 120 min) and permanent MCAO.
<p>TTC method reliably delineates the infarct core at 1 d after 30 min MCAO. After 120 min and permanent MCAO the infarct core was clearly detectable at all investigated times. Scale bar: 5 mm.</p
Sequences of gene specific primers and associated amplicon lengths and probes for <i>in situ</i> hybridization.
<p>Sequences of gene specific primers and associated amplicon lengths and probes for <i>in situ</i> hybridization.</p
Distribution of GAD67 splice variants in rat brain at P1 (left panels) and P90 (right panels).
<p>GAD67 mRNA (A, B) and embryonic transcripts (EGAD; C–G) were detected using radioactive <i>in situ</i> hybridization. Autoradiographic film images of saggital sections showed a predominant expression of GAD67 mRNA in the olfactory bulb (OB) at both ages (A, B) and a moderate expression in the cerebellum at P90 (B). Intense labeling of embryonic messages was found in the subventricular zone (SVZ; C, E) and the olfactory bulb at P1 (C). The expression persisted until adulthood [D, F, G (enlarged SVZ from emulsion autoradiography)]. Sense probe for embryonic GAD67 mRNA was used as a negative control (H, I). Black spot in H displays an artefact. CBL – cerebellum; GCL – granule cell layer; HC – hippocampus; OB – olfactory bulb; PGL – periglomerular layer; RMS – rostral migratory stream; RT – reticular thalamic nucleus; S – striatum; SEL – subependymal layer; SVZ – subventricular zone. Scale bar A–F, I, H: 2 mm; G: 100 µm.</p
Histological (thionine) and immunohistochemical (MAP2, HSP72, HSP27) characterizations of infarcts induced by a transient (30 and 120 min) and permanent MCAO.
<p>Occlusion of the MCA for 30 min always leads to an irreversible injury (infarct core) in the striatum and frequently in parts of the neocortex. The neocortex is also part of the perilesional region which also might include hippocampus, amygdala, thalamus, and hypothalamus. An irregular impairment of remote areas also occurs (cingulate and retrosplenial cortex, septum, and all contralateral affected regions). Following 120 min MCAO striatum, neocortex, amygdala, and hypothalamus are part of the infarct core. Impaired perilesional zones include hippocampus, thalamus, and hypothalamus. The ipsi- and contralateral cingulate and retrosplenial cortex and the contralateral hippocampus as well as the septal area were identified as remote affected regions. Permanent MCAO leads to infarct cores always comprising the striatum, neocortex, amygdala, and hypothalamus. Further impaired regions are similar as identified following 120 min MCAO. Rare cerebrovascular anatomies like a unilateral origin of the ACA could also lead to ischemic changes in usually remote areas like cingulate and retrosplenial cortex (1 d following 30 min MCAO). Black dotted lines indicate the infarct core and perilesional affected regions, whereas red dotted lines display remote effects. Please note that a cellular resolution can not be provided by this overview, for this purpose please refer to <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004764#pone-0004764-g002" target="_blank">Fig. 2</a>. Scale bar: 2 mm.</p